

Hughes Information Technology Corporation
Landover, MD

305-CD-009-001

EOSDIS Core System Project

Release A SDPS Ingest Subsystem
Design Specification

July 1995

Hughes Information Technology Corporation

Landover, Maryland

Release A SDPS Ingest Subsystem
Design Specification
for the ECS Project

July 1995

Prepared Under Contract NAS5-60000
Item #046

SUBMITTED BY

__
Parag Ambardekar, Release A CCB Chairman Date
EOSDIS Core System Project

Parag Ambardekar /s/ 7/28/95

This page intentionally left blank.

iv

Preface

This document is one of sixteen comprising the detailed design specifications of the SDPS and
CSMS subsystem for Release A of the ECS project. A complete list of the design specification doc-
uments is given below. Of particular interest are documents number 305-CD-004, which provides
an overview of the subsystems and 305-CD-018, the Data Dictionary, for those reviewing the ob-
ject models in detail. A Release A SDPS and CSMS CDR Review Guide (510-TP-002) is also
available.

The SDPS and CSMS subsystem design specification documents for Release A of the ECS Project
include:

305-CD-004 Release A Overview of the SDPS and CSMS Segment System Design
Specification

305-CD-005 Release A SDPS Client Subsystem Design Specification

305-CD-006 Release A SDPS Interoperability Subsystem Design Specification

305-CD-007 Release A SDPS Data Management Subsystem Design Specification

305-CD-008 Release A SDPS Data Server Subsystem Design Specification

305-CD-009 Release A SDPS Ingest Subsystem Design Specification

305-CD-010 Release A SDPS Planning Subsystem Design Specification

305-CD-011 Release A SDPS Data Processing Subsystem Design Specification

305-CD-012 Release A CSMS Segment Communications Subsystem DesignSpeci-
fication

305-CD-013 Release A CSMS Segment Systems Management Subsystem Design
Specification

305-CD-014 Release A GSFC Distributed Active Archive Center Implementation

305-CD-015 Release A LaRC Distributed Active Archive Center Implementation

305-CD-016 Release A MSFC Distributed Active Archive Center Implementation

305-CD-017 Release A EROS Data Center Distributed Active Archive Center
Implementation

305-CD-018 Release A Data Dictionary for Subsystem Design Specification

305-CD-019 Release A System Monitoring and Coordination Center Implementation

v

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (ECS) at URL http://edhs1.gs-
fc.nasa.gov.

This document is a contract deliverable with an approval code 2. As such, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class I and Class II change control requirements described in the EOS Configu-
ration Management Plan, and changes to this document shall be made by document change notice
(DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Landover, MD 20785

vi

Abstract

The Ingest Subsystem consists of a collection of hardware and software that supports the ingest of
data into ECS repositories. This volume presents the overview and critical design of the Ingest
CSCI and Ingest Client HWCI elements that comprise this subsystem.

Keywords: Ingest, PDL, CSCI, HWCI, client host, working storage, network ingest, polling ingest,
hard media ingest, preprocessing, session, request, metadata, GUI, Level 0

vii

This page intentionally left blank.

viii

Change Information Page

List of Effective Pages

Page Number Issue
Title Final

iii through xv Final

1-1 and 1-2 Final

2-1 through 2-4 Final

3-1 through 3-14 Final

4-1 through 4-180 Final

5-1 through 5-12 Final

A-1 through A-12 Final

B-1 through B-16 Final

AB-1 through AB-4 Final

GL-1 through GL-8 Final

Document History

Document Number Status/Issue Publication Date CCR Number
305-CD-009-001 Final July 1995 95-0472

ix

This page intentionally left blank.

x

Contents

Preface

Abstract

1. Introduction

1.1 Identification ... 1-1
1.2 Scope.. 1-1
1.3 Document Organization .. 1-1
1.4 Status and Schedule ... 1-2

 2. Related Documents

2.1 Parent Documents .. 2-1
2.2 Applicable Documents .. 2-1
2.3 Information Documents Not Referenced ... 2-2

3. Release A SDPS Ingest Subsystem Overview

3.1 Introduction and Context ... 3-1
3.1.1 Ingest Subsystem Context Diagram .. 3-2

3.2 Ingest Subsystem Overview... 3-2
3.2.1 Ingest Subsystem Configuration Item (CI) List .. 3-2
3.2.2 Ingest Subsystem Design Rationale .. 3-2

4. INGST - Ingest CSCI

4.1 CSCI Overview.. 4-1
4.2 CSCI Context ... 4-2
4.3 Ingest CSCI Object Model... 4-2

4.3.1 CsGateWay Class... 4-8
4.3.2 DsCIDescriptor Class .. 4-8
4.3.3 InBOBinMetadata Class ... 4-9
4.3.4 InBOMetadata Class ... 4-10
4.3.5 InDAN Class .. 4-10
4.3.6 InDataPreprocessList Class .. 4-12
4.3.7 InDataPreprocessTask Class .. 4-13
4.3.8 InDataServerInsertionTask Class ... 4-15

xi

4.3.9 InDataServerInsertionTask Class ... 4-17
4.3.10 InDataTransferTask Class .. 4-18
4.3.11 InDataType Class ... 4-20
4.3.12 InDataTypeTemplate Class... 4-21
4.3.13 InExternalDataProviderThreshold Class ... 4-22
4.3.14 InFDFData Class .. 4-25
4.3.15 InFile Class .. 4-26
4.3.16 InFileTypeTemplate Class .. 4-28
4.3.17 InGRIBData Class ... 4-31
4.3.18 InGUISession Class .. 4-31
4.3.19 InHDFMetadata Class .. 4-32
4.3.20 InHistoryLog Class .. 4-33
4.3.21 InLogMonitor Class .. 4-34
4.3.22 InLongDAA Class ... 4-35
4.3.23 InLongDDN Class ... 4-36
4.3.24 InMediaIngest Class ... 4-37
4.3.25 InMessage Class.. 4-38
4.3.26 InMetadata Class... 4-38
4.3.27 InMetadataTool Class .. 4-39
4.3.28 InNetworkIngest Class ... 4-41
4.3.29 InPVMetadata Class.. 4-41
4.3.30 InPollingIngestSession Class .. 4-43
4.3.31 InPollingThreshold Class.. 4-44
4.3.32 InReformatData Class... 4-45
4.3.33 InRequest Class .. 4-46
4.3.34 InRequestController Class ..
4.3.35 InRequestFileInfo Class ... 4-51
4.3.36 InRequestInfo Class ... 4-52
4.3.37 InRequestList Class ... 4-54
4.3.38 InRequestManager Class ... 4-56
4.3.39 InRequestManager_C Class.. 4-58
4.3.40 InRequestManager_S Class .. 4-59
4.3.41 InRequestProcessData Class .. 4-59
4.3.42 InRequestProcessHeader Class .. 4-61
4.3.43 InRequestSummaryData Class ... 4-63
4.3.44 InRequestSummaryHeader Class ... 4-64
4.3.45 InRequest_C Class ... 4-66
4.3.46 InRequest_S Class ... 4-67
4.3.47 InResourceIF Class .. 4-68

xii

4.3.48 InSDMetadata Class ... 4-70
4.3.49 InScienceData Class.. 4-70
4.3.50 InServer Class .. 4-71
4.3.51 InServerExtRPC_C Class .. 4-72
4.3.52 InServerExtRPC_S Class ... 4-73
4.3.53 InServerIntRPC_C Class ... 4-73
4.3.54 InServerIntRPC_S Class... 4-74
4.3.55 InSession Class .. 4-75
4.3.56 InSessionEcsRPC_C Class ... 4-77
4.3.57 InSessionEcsRPC_S Class ... 4-77
4.3.58 InSessionExtRPC_C Class .. 4-78
4.3.59 InSessionExtRPC_S Class ... 4-79
4.3.60 InSessionInfo Class... 4-80
4.3.61 InSessionIntRPC_C Class .. 4-81
4.3.62 InSessionIntRPC_S Class .. 4-82
4.3.63 InShortDAA Class ... 4-83
4.3.64 InShortDDN Class ... 4-83
4.3.65 InSourceMCF Class ... 4-84
4.3.66 InStatusMonitor Class .. 4-86
4.3.67 InSystemThreshold Class.. 4-87
4.3.68 InTemplateEditor Class .. 4-88
4.3.69 InThreshold Class .. 4-89
4.3.70 InThresholdController Class... 4-89
4.3.71 InTransferredData Class ... 4-91

4.4 Ingest CSCI Dynamic Model ... 4-92
4.4.1 Automated Network Ingest (Get) Scenario.. 4-92
4.4.2 Polling Ingest (Files) Scenario... 4-96
4.4.3 Polling Ingest (Delivery Record) Scenario .. 4-99
4.4.4 User Network Ingest Scenario ... 4-102
4.4.5 Hard Media Ingest Scenario ... 4-104
4.4.6 Ingest History Log Viewing Scenario .. 4-106
4.4.7 Operator Ingest Status Monitoring Scenario... 4-108
4.4.8 User Ingest Status Monitoring Scenario .. 4-110
4.4.9 Operator Request Update Scenario... 4-112
4.4.10 Preprocessing Scenario .. 4-114
4.4.11 Ingest Fault/Error Scenario .. 4-117

4.5 CSCI Structure .. 4-120
4.5.1 Ingest Session Manager CSC ..4-121
4.5.2 Polling Ingest Client Interface CSC ...4-123

xiii

4.5.3 Ingest Request Processing CSC ...4-124
4.5.4 Ingest Data Transfer CSC .. 4-126
4.5.5 Ingest Data Preprocessing CSC ...4-127
4.5.6 Operator Ingest Interface CSC ...4-134
4.5.7 User Network Ingest Interface CSC ..4-138
4.5.8 Ingest DBMS CSC... 4-140
4.5.9 Ingest Administration Data CSC ...4-140
4.5.10 Peripherals CSC... 4-140
4.5.11 Viewing Tools CSC ... 4-140
4.5.12 Data Storage Software CSC... 4-140
4.5.13 Resource Administration CSC... 4-141
4.5.14 Client Interfaces CSC .. 4-141

4.6 Ingest CSCI Management and Operation .. 4-141
4.6.1 System Management Strategy.. 4-141
4.6.2 Operator Interfaces... 4-147
4.6.3 Ingest Production Reports ..4-149

5. ICLHW - Ingest Client HWCI

5.1 Introduction ... 5-1
5.1.1 HWCI Design Drivers.. 5-2
5.1.2 HWCI Structure ... 5-5
5.1.3 Failover and Recovery Strategy ... 5-11

Figures

3.1-1. Ingest Subsystem Context Diagram ... 3-3
3.1-2. Ingest Subsystem Hardware Diagram .. 3-10
4.4-4. In_User_Network_Ingest_Event_Trace Diagram Dynamic Model 4-103
4.4-11. In_Ingest_Network_Ingest_Get_State_Diagram .. 4-118
4.4-12 .In_Ingest_Media_Ingest_State Diagram .. 4-119
4.5-1. Ingest CSC Interaction ... 4-121
4.5-2. Ingest Session Manager CSC.. 4-123
4.5-3. Ingest Polling CSC.. 4-125
 4.5-4. Ingest Request Processing CSC... 4-127
4.5-5. Ingest Preprocessing CSC Data Flow .. 4-129
4.5-6. Media Ingest CSC .. 4-136
4.5-7. Administrative Viewing CSC .. 4-137
4.5-8. Request Cancellation CSC ... 4-138
4.5-9. User Network Ingest CSC .. 4-139

xiv

5.1-1. Ingest HWCI Block Diagram .. 5-6
5.1-2. Ingest Network Connectivity .. 5-8

Tables

3.1-1. Ingest Subsystem Interfaces .. 3-4
3.1-2. External Interface Protocols ... 3-12
4.2-1. Ingest CSCI Service Interfaces ... 4-2
4.4-1. Automated Network Ingest Scenario (Get) Event Trace Diagram 4-93
4.4-2. Polling Ingest (Files) Event Trace Diagram .. 4-96
 4.4-3. Polling Ingest (Delivery Record) Event Trace Diagram.. 4-99
4.4-4. User Network Ingest Event Trace .. 4-102
4.4-5. Hard Media Ingest Event Trace ... 4-104
4.4-6. Ingest History Log Event Trace Diagram .. 4-106
4.4-7. Operator Ingest Status Monitoring Event Trace .. 4-108
4.4-8. User Ingest Status Monitoring Event Trace ... 4-110
4.4-9. Operator Request Update Event Trace .. 4-112
4.4-10. Preprocessing Event Trace .. 4-114
4.5-1. Ingest CSCI Components ... 4-120
4.5-2. InSession Derived Object Classes ... 4-122
4.5-3. Release-A Ingest Data Type Preprocessing Requirements... 4-131
4.6-1. Ingest Subsystem Error Categories ... 4-142
4.6-2. Ingest GUI Screens .. 4-148
4.6-3. Standard Ingest Production Reports ... 4-149
5.1-1. Daily L0 Ingest Volumes ... 5-1
5.1-2. Ingest Client Sizing Factors ... 5-2
 5.1-3. Ingest Client Interfaces .. 5-6
5.1-4. Ingest HWCI Interface Drivers ... 5-7
5.1-5. Ingest HWCI Component Descriptions ... 5-8
5.1-6. Annual L0 Storage Volumes... 5-11
A-1. Requirements Trace ..A-1

Appendix A. Requirements Trace

Appendix B. Program Design Language (PDL)

Acronyms and Abbreviations

Glossary

xv

This page intentionally left blank.

1-1 305-CD-009-001

1. Introduction

1.1 Identification
This Release A SDPS Ingest Subsystem Design Specification for the ECS Project, Contract Data
Requirement List (CDRL) Item 046, with requirements specified in Data Item Description (DID)
305/DV2, is a required deliverable under the Earth Observing System Data and Information Sys-
tem (EOSDIS) Core System (ECS), Contract NAS5-60000. This publication is part of a series of
documents comprising the Science and Communications Development Office design specification
for the Communications and System Management Segment (CSMS) and the Science and Data Pro-
cessing Segment (SDPS) for Release A.

1.2 Scope
The Release A SDPS Ingest Subsystem Design Specification defines the detailed design of the In-
gest Subsystem. It defines the Ingest Subsystem computer software and hardware architectural de-
sign, as well as subsystem design based on Level 4 requirements.

This subsystem is on a formal development track. It is released in and reviewed at the formal Re-
lease A Critical Design Review.

This document reflects the June 21, 1995 Technical Baseline maintained by the contractor config-
uration control board in accordance with ECS Technical Direction No.11, dated December 6, 1994.

1.3 Document Organization
The document is organized to describe the Release A SDPS Ingest Subsystem design as follows:

Section 1 provides information regarding the identification, scope, status, and organization of this
document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 provides an overview of the Subsystem, focusing on the high-level design concept. This
provides general background information to put Ingest into context.

Section 4 contains the structure of the computer software configuration item (CSCI) comprising
the Ingest Subsystem. Included are CSCI context diagrams, the CSCI object model, the CSCI dy-
namic model (scenarios), and the CSCI physical model (executables).

Section 5 contains the hardware configuration item (HWCI) design of the Ingest Subsystem.

Appendix A provides the Level 4 requirements-to-design mapping matrix for use in verifying cov-
erage of the Level 4 requirements.

Appendix B contains the Program Design Language (PDL) for all non-trivial Ingest object model
operations.

An Acronym list and Glossary are provided.

1-2 305-CD-009-001

1.4 Status and Schedule
This submittal of DID 305/DV2 meets the milestone specified in the CDRL of NASA contract
NAS5-60000. The submittal was reviewed during the SDPS Preliminary Design Review (PDR)
and reflects changes to the design which resulted from that review. The PDR also triggered a num-
ber of follow up actions in response to Review Item Discrepancies (RID) the results of which are
incorporated into the Critical Design Review (CDR) version of this document.

2-1 305-CD-009-001

2. Related Documents

2.1 Parent Documents
The parent document is the document from which the scope and content of this Ingest Subsystem
Design Specification is derived.

194-207-SE1-001 System Design Specification for the ECS Project

305-CD-002-002 Science and Data Processing Segment (SDPS) Design Specification for
the ECS Project

2.2 Applicable Documents
The following documents are referenced within this Subsystem Design Specification, or are direct-
ly applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

209-CD-001-001 Interface Control Document Between EOSDIS Core System (ECS) and
the NASA Science Internet

209-CD-002-001 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System

209-CD-003-001 Interface Control Document Between EOSDIS Core System (ECS) and
EOS-AM Project for AM-1 Spacecraft Analysis Software

209-CD-004-001 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base

209-CD-005-002 Interface Control Document Between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF)

209-CD-006-002 Interface Control Document Between EOSDIS Core System (ECS) and
National Oceanic and Atmospheric Administration (NOAA) Affiliated
Data Center (ADC)

209-CD-007-002 Interface Control Document Between EOSDIS Core System (ECS) and
TRMM Science Data and Information System (TSDIS)

209-CD-008-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Goddard Space Flight Center (GSFC) Distributed Active Archive
Center (DAAC)

209-CD-009-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Marshall Space Flight Center (MSFC) Distributed Active Archive
Center (DAAC)

209-CD-011-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Version 0 System

305-CD-003-002 Communications and System Management Segment (CSMS) Design
Specification for the ECS Project

2-2 305-CD-009-001

308-CD-001-004 Software Development Plan for the ECS Project

313-CD-004-001 Release A Communications and System Management Segment (CSMS)
and Science Data Processing Segment (SDPS) Internal Interface Con-
trol Document for the ECS Project

423-41-03 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

2.3 Information Documents Not Referenced
The following documents, although not referenced herein and/or not directly applicable, do ampli-
fy and clarify the information presented in this document. These documents are not binding on the
content of the Subsystem Design Specifications.

205-CD-002-002 Science User's Guide and Operations Procedure Handbook for the ECS
Project. Part 4: Software Developer's Guide to Preparation, Delivery,
Integration, and Test with ECS

206-CD-001-002 Version 0 Analysis Report for the ECS Project

209-CD-010-001 Interface Control Document Between EOSDIS Core System (ECS) and
the Langley Research Center (LaRC) Distributed Active Archive Center
(DAAC)

194-302-DV2-001 ECS Facilities Plan for the ECS Project

101-303-DV1-001 Individual Facility Requirements for the ECS Project, Preliminary

194-317-DV1-001 Prototyping and Studies Plan for the ECS Project

318-CD-003-XXX Prototyping and Studies Progress Report for the ECS Project (monthly)

333-CD-003-001 SDP Toolkit Users Guide for the ECS Project

601-CD-001-003 Maintenance and Operations Management Plan for the ECS Project

194-604-OP1-001 ECS Operations Concept Document for the ECS Project, Working Draft

101-620-OP2-001 List of Recommended Maintenance Equipment for the ECS Project

194-703-PP1-001 System Design Review (SDR) Presentation Package for the ECS Project

193-801-SD4-001 PGS Toolkit Requirements Specification for the ECS Project

194-813-SI4-002 Planning and Scheduling Prototype Results Report for the ECS Project

194-813-SI4-003 DADS Prototype One FSMS Product Operational Evaluation

194-813-SI4-004 DADS Prototype One STK Wolfcreek 9360 Automated Cartridge Sys-
tem Hardware Characterization Report

813-RD-009-001 DADS Prototype Two Multi-FSMS Product Integration Evaluation

828-RD-001-002 Government Furnished Property for the ECS Project

193-WP-118-001 Algorithm Integration and Test Issues for the ECS Project

193-WP-611-001 Science-based System Architecture Drivers for the ECS Project, Revi-
sion 1.0

193-WP-623-001 ECS Evolutionary Development White Paper

2-3 305-CD-009-001

194-WP-901-002 EOSDIS Core System Science Information Architecture, White Paper,
Working Paper

194-WP-902-002 ECS Science Requirements Summary, White Paper, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, White Paper, Work-
ing Paper

194-WP-925-001 Science Software Integration and Test, White Paper, Working Paper

420-WP-001-001 Maximizing the Use of COTS Software in the SDPS SDS Software De-
sign, White Paper

160-TP-002-001 Data Migration White Paper

194-TP-548-001 User Scenario Functional Analysis [for the ECS Project]

194-TP-569-001 PDPS Prototyping at ECS Science and Technology Laboratory,
Progress Report #4

222-TP-003-005 Release Plan Content Description for the ECS Project

430-TP-001-001 SDP Toolkit Implementation with Pathfinder SSM/I Precipitation Rate
Algorithm, Technical Paper

440-TP-001-001 Science Data Server Architecture Study [for the ECS Project]

440-TP-014-001 ECS Ingest Subsystem Topology Analysis

none Hughes Training, Inc., ECS User Interface Style Guide, White Paper,
Version 5.0

423-16-01 Goddard Space Flight Center, Data Production Software and Science
Computing Facility (SCF) Standards and Guidelines

423-41-02 Goddard Space Flight Center, Functional and Performance Require-
ments Specification for the Earth Observing System Data and Informa-
tion System (EOSDIS) Core System

540-022 Goddard Space Flight Center, Earth Observing System (EOS) Commu-
nications (Ecom) System Design Specification

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document Be-
tween EDOS and the EOS Ground System (EGS)

2-4 305-CD-009-001

This page intentionally left blank.

3-1 305-CD-009-001

3. Ingest Subsystem Overview

3.1 Introduction and Context
The Release A SDPS Ingest Subsystem contains a collection of hardware and software that
supports the ingest of data into ECS repositories on a routine and ad hoc basis and triggers
subsequent archiving and/or processing of the data. The Ingest Subsystem configuration must be
flexible to support a variety of data formats and structures, external interfaces, and ad-hoc ingest
tasks. Data processing and storage functions to be performed by the Ingest Subsystem and ingest
clients vary according to attributes of the ingested data such as data type, data format, and the level
to which the ingested data has been processed.

From a software perspective, the Ingest Subsystem is organized into a collection of tools from
which those required for a specific situation can be configured. The resultant configuration is
called an ingest client. Ingest clients may exist in a static configuration to service a routine external
interface, or they may be specially configured and exist only for the duration of a specific ad hoc
ingest task. The ingest clients provide a single virtual interface point for the receipt of all external
data to be archived within the SDPS. Individual ingest clients are established to support each
unique interface, allowing the interface parameters to be modified as interface and mission
requirements evolve. Ingest data preprocessing, metadata validation, and metadata extraction is
performed by the ingest clients on any incoming data, as required.

Data is staged to one of two areas depending on the data level, data type, and other data set specific
characteristics:

• Level 0 data from ongoing missions will be staged to the Ingest Subsystem working storage
area, where the data will be ingested and stored in the Level 0 (L0) rolling store. The
staged data will also be accessible by the SDPS Processing Subsystem for that data which
must be processed to higher levels.

• Level 1a-4 data will be staged directly to the working storage area in the Data Server
Subsystem. Ingest client functionality such as quality checking and reading of metadata
will be performed on this data upon the Data Server Subsystem processor hardware. The
data server will then archive the data in the logical and physical data server to which the
particular data has been assigned.

The hardware components of the Ingest Subsystem are similar to those of the data server, but are
specialized to meet the ingest requirements at a given site. Specialized forms of ingest clients may
be incorporated into site unique architectures, and additional processing hardware may also be
incorporated at those sites where special transformations must be accomplished on ingest data sets.

Ingest Subsystem hardware presented in this section consists of the Ingest Client HWCI. Since the
Ingest Subsystem is a form of data server, it utilizes hardware which is similar to the data server
Access Control and Management HWCI, Working Storage HWCI, and Data Repository HWCI.
The relationship of the Ingest Client HWCI with these other HWCIs is discussed in Section 5.

3-2 305-CD-009-001

3.1.1 Ingest Subsystem Context Diagram

The Ingest Subsystem must be capable of accepting data from a variety of sources including both
electronic network interfaces and hard media. Early interface testing is performed at Interim
Release-1 (IR-1) for interfaces at the Sensor Data Processing Facility (SDPF), the Tropical
Rainfall Measuring Mission (TRMM) Science Data Information System (TSDIS), and the NOAA
Affiliated Data Centers (ADCs). The NOAA ADCs include the National Environmental Satellite,
Data, and Information Service (NESDIS) and the GSFC Data Assimilation Office (GDAO).
Release A interfaces include the SDPF, TSDIS, NOAA ADCs (NESDIS and the GDAO), the
Science Computing Facilities (SCFs) (for algorithm delivery), the Data Server Subsystem (for
archiving), science users, clients (operations staff), Version 0 DAACs, and other ECS DAACs.
Early interface testing is performed at Release A for the EOS Data and Operations System (EDOS),
Landsat-7, and EOS Operations Center (EOC) interfaces. Additional interfaces are added at
Release B and at future releases. The Ingest Subsystem context diagram is shown in Figure 3.1-1.
Specific details on the interfaces are included in Table 3.1-1.

The following assumptions have been made regarding the characteristics of the data to be ingested:

• EDOS and SDPF will each generate production data sets which will be transferred when
the data set is complete. EDOS has stated that Production Data Sets (PDSs) will based on
time and/or size (not granule or orbit). Each transferred file would contain only one
Application Process ID (APID). SDPF has stated that the data will be transferred once per
24 hour period.

• Receipt and processing of products from other sources is assumed to be random, but largely
continuous over a 24-hour period. Ingest Subsystem resources will be sized to handle
predictable peak loads.

3.2 Ingest Subsystem Overview

3.2.1 Ingest Subsystem Configuration Item (CI) List

The Ingest Subsystem is composed of one Computer System Configuration Item (CSCI) and one
Hardware Configuration Item (HWCI):

• Ingest CSCI

• Ingest Client HWCI

These CIs are discussed in detail in subsections 4 and 5, respectively.

3.2.2 Ingest Subsystem Design Rationale

Main drivers for the design are:

• the high reliability required for Level 0 data ingest

• the required extensibility of the ingest client implementation to future external interfaces

• the demands which are imposed on ingest by the migration of Version 0 data from DAAC
repositories external to ECS; and

• other performance requirements related to data ingest

The Ingest Subsystem design incorporates the following measures in response to the above drivers:

3-3 305-CD-009-001

• The need for high reliability to support the function of Level 0 science data ingest was
resolved by the logical and physical separation of the Ingest Subsystem (Level 0) data
server instantiation from other data server instantiations. The ingest of Level 0 data has a
very high priority, and must be supported with high component reliability and availability.
Maintaining this level of reliability, maintainability, and availability (RMA) throughout the
entire SDPS would be prohibitively expensive. Separating a high RMA ingest complement
of hardware and software from other SDPS functions allows each subsystem within SDPS
to support only the level of RMA necessary to perform its required functions.

• The need for future extensibility was resolved by separating the ingest processing
component from the associated data server component and providing template interface
software that may be reused as new interfaces are added or old interfaces modified. The
external interfaces to be supported by the ingest clients change over time as spacecraft and
instruments are added and removed. Each external interface must potentially be supported
with a different data transfer mechanism, format conversion, quality checking, metadata
definition, and other attributes unique to that data. Separating the performance of these
functions from the Level 0 data repository component minimizes or eliminates changes to
the data server configuration as mission requirements change.

Figure 3.1-1. Ingest Subsystem Context Diagram

EDOS

SDPF

ADC

Landsat-7

TSDIS

SCF

IP

FDF

DAACs
EOC

Interoperability

Data
Server

Operations
Staff

MSS/SMC

Version 0

Users

Processing

Ingest

Planning

1 1

2 2

3

4

5

6

8
8

7

9
10 11

12

13

13

14

14

15

16

16

11

17
17

18

3-4 305-CD-009-001

Table 3.1-1. Ingest Subsystem Interfaces (1 of 5)
Flow
No.

Source Destination Data Types Data Volume Frequency

13 Ingest Operations
Staff

Ingest Status less than 1 MB in response to request

13 Ingest Operations
Staff

Ingest Threshold
Update Status

less than 1 MB in response to request

13 Ingest Operations
Staff

Ingest Log less than 1 MB in response to request

12 Ingest Data Server Standard Products greater than 1 GB as required for archiving

12 Ingest Data Server Metadata between 1 MB and 1 GB as required for archiving

12 Ingest Data Server Ancillary Data greater than 1 GB as required for archiving

12 Ingest Data Server Correlative Data greater than 1 GB as required for archiving

12 Ingest Data Server Calibration Data between 1 MB and 1 GB as required for archiving

12 Ingest Data Server Documents between 1 MB and 1 GB as required for archiving

12 Ingest Data Server Orbit/Attitude Data between 1 MB and 1 GB as required for archiving

12 Ingest Data Server Data Availability
Schedules

between 1 MB and 1 GB as required for archiving

12 Ingest Data Server Algorithms greater than 1 GB as required for archiving

12 Ingest Data Server Special Products greater than 1 GB as required for archiving

12 Ingest Data Server L0 Data greater than 1 GB as required for archiving

12 Ingest Data Server Quick Look Data between 1 MB and 1 GB as required for archiving

12 Ingest Data Server QA Data between 1 MB and 1 GB as required for archiving

12 Ingest Data Server Resource Allocation /
Deallocation Re-
quests

less than 1 MB on reception of data

1* Ingest EDOS Service Requests
(Back-up data
requests)

less than 1 MB rare

1 Ingest EDOS Fault Report less than 1 MB rare

1 Ingest EDOS Fault Isolation Re-
quest

less than 1 MB depends on EDOS

1 Ingest EDOS L0 data greater than 1 GB rare

8* Ingest FDF Repaired/Retained
Orbit Data Request

less than 1 MB infrequent (depends on
mission requirements)

11 Ingest Interopera-
bility

Search Request less than 1 MB as required for archiving

11 Ingest Interopera-
bility

Advertisement less than 1 MB when capability changes

11* Ingest Interopera-
bility

Subscription less than 1 MB in response to request

14 Ingest MSS/SMC Ingest status less than 1 MB in response to request

3-5 305-CD-009-001

Flow
No.

Source Destination Data Types Data Volume Frequency

14 Ingest MSS/SMC Ingest log less than 1 MB in response to request

17 Ingest Planning Notice less than 1 MB several times per day as
L0 data arrives from
SDPF or EDOS

18 Ingest Processing L0 data greater than 1 GB as requested by Pro-
cessing for L0 to higher
level processing

2 Ingest SDPF L0 data between 1 MB and 1 GB as requested by Pro-
cessing for L0 repro-
cessing

16 Ingest Users Ingest Status less than 1 MB as requested

3 ADC
(NES-
DIS
and
GDAO)

Ingest Metadata less than 1 MB frequency dependent on
user input

3 ADC
(NES-
DIS
and
GDAO)

Ingest Ancillary Data between 1 MB and 1 GB frequency dependent on
data set

3 ADC
(NES-
DIS
and
GDAO)

Ingest Calibration Data, Cor-
relative Data, Docu-
ments

less than 1 MB frequency dependent on
user input

3 ADC
(NES-
DIS
and
GDAO)

Ingest Data Availability No-
tices

less than 1 MB several times a day

13 Client
Opera-
tions
Staff

Ingest ingest status requests less than 1 MB as requested

13 Opera-
tions
Staff

Ingest ingest log requests less than 1 MB as requested

13 Opera-
tions
Staff

Ingest ingest control re-
quests

less than 1 MB as requested

13 Opera-
tions
Staff

Ingest ingest threshold con-
trol requests

less than 1 MB as requested

9 DAACs Ingest Ancillary Data greater than 1 GB as required

9 DAACs Ingest Correlative Data greater than 1 GB as required

9 DAACs Ingest Calibration Data between 1 MB and 1 GB as required

9 DAACs Ingest QA Data between 1 MB and 1 GB as required

1 EDOS Ingest Service Request Dis-
position

less than 1 MB as required

Table 3.1-1. Ingest Subsystem Interfaces (2 of 5)

3-6 305-CD-009-001

Flow
No.

Source Destination Data Types Data Volume Frequency

1 EDOS Ingest PDSs (L0 Data) greater than 1 GB several times a day

1* EDOS Ingest ADSs (Back-up L0
Data)

greater than 1 GB as required

1 EDOS Ingest PDS Delivery Record less than 1 MB several times a day

1* EDOS Ingest ADS Delivery Record less than 1 MB as required

1* EDOS Ingest Physical Media Unit
Delivery Record

less than 1 MB as required

1 EDOS Ingest Undetected Fault Iso-
lation

less than 1 MB as required

10 EOC Ingest Data Availability No-
tice

less than 1 MB several times a day

10 EOC Ingest Telemetry Data 173 MB/day Twice per day (12 files
each transfer)

10 EOC Ingest Event 12 MB/day Every hour

10 EOC Ingest EOC statistics, sched-
ules, reports, etc.

25 MB/day Twice per day (25 files
total each day)

8* FDF Ingest Repaired Orbit Data between 1 MB and 1 GB as requested

11 Interop-
erability

Ingest Notification very low as requested

11 Interop-
erability

Ingest Advertisement Infoa less than 1 MB in response to request

7* IP Ingest Project Data Base In-
formation

less than 1 MB as required (every 3
months)

7* IP Ingest History Data between 1 MB and 1 GB daily (Media Delivery
from ASTER)

7* IP Ingest Level 0 - Level 4 Prod-
ucts

greater than 1 GB daily (For ASTER, media
delivery & electronic for
Q/L Level 1a)

7* IP Ingest Metadata less than 1 MB dependent on user input

7* IP Ingest Schedule Adjudica-
tion Data

less than 1 MB as required

7* IP Ingest Status less than 1 MB as required

7* IP Ingest Documents less than 1 MB as required

7* IP Ingest Calibration Data between 1 MB and 1 GB as required

7* IP Ingest Correlative Data between 1 MB and 1 GB as required

7* IP Ingest Ancillary Data between 1 MB and 1 GB as required

4 Land-
sat 7
PS

Ingest Metadata less than 1 MB several times a day

4 Land-
sat 7
PS

Ingest L0 Science Data ~140 GB/day several times a day

Table 3.1-1. Ingest Subsystem Interfaces (3 of 5)

3-7 305-CD-009-001

Flow
No.

Source Destination Data Types Data Volume Frequency

4 Land-
sat 7
MOC

Ingest Activity Calendar between 1 MB and 1 GB TBR

4 Land-
sat 7
PS

Ingest Payload Correction
Data

between 1 MB and 1 GB several times a day

4 Land-
sat 7
PS

Ingest Mirror Scan Correc-
tion Data

between 1 MB and 1 GB several times a day

4 Land-
sat 7
PS

Ingest Calibration data between 1 MB and 1 GB several times a day

4 Land-
sat 7
PS

Ingest Data Availability No-
tice

less than 1 MB several times a day

4 Land-
sat 7
PS

Ingest Browse Data greater than 1 GB as required

4 Land-
sat 7
PS

Ingest Directory and Guide
Information

between 1 MB and 1 GB TBR

4 Land-
sat 7
IGS

Ingest Inventory Data between 1 MB and 1 GB TBR

4 Land-
sat 7
IGS

Ingest Browse Data greater than 1 GB TBR

4 Land-
sat 7
IAS

Ingest Calibration Data between 1 MB and 1 GB TBR

4 Land-
sat 7
IAS

Ingest Metadata between 1 MB and 1 GB TBR

14 MSS/
SMC

Ingest Ingest status requests less than 1 MB in response to request

14 MSS/
SMC

Ingest Ingest log requests less than 1 MB in response to request

17 Plan-
ning

Ingest Subscription less than 1 MB as required

6* SCF Ingest Status less than 1 MB as required

6* SCF Ingest Metadata/updates less than 1 MB as required

6* SCF Ingest Documents less than 1 MB as required

6 SCF Ingest Algorithms/Updates between 1 MB and 1 GB as required

2 SDPF Ingest L0 Data 65 MB/day - MSFC
90 MB/day - LaRC

daily

2 SDPF Ingest Quick Look Data between 1 MB and 1 GB three times a day

2 SDPF Ingest Predictive Orbit Data between 1 MB and 1 GB daily

2 SDPF Ingest Definitive Orbit Data between 1 MB and 1 GB daily

Table 3.1-1. Ingest Subsystem Interfaces (4 of 5)

3-8 305-CD-009-001

b. Ingest uses the Advertisement Information to locate the relevant Data Servers with which it needs to
interact.

c. In the table, where an exact number is unavailable, the data volume is estimated as low (less than 1 MB),
medium (between 1 MB and 1 GB), or high (greater than 1 GB) per use defined in the frequency column
The frequency information will be updated as the interfaces are fully defined. Note that EDOS, EOC,
and Landsat-7 interfaces are implemented only to the extent needed for purposes of early interface testing
at Release A.

• In addition, each new or modified external interface may require custom interface software
to facilitate the data transfer process. The long-term EOS program expects to add large
numbers of new interfaces over time. The Ingest Subsystem software is designed in a
modular fashion so as to minimize the development effort required for new or modified
interfaces.

• The volume and complexity of data provided from the Version 0 facilities to the ECS for
archival are critical design drivers for the ECS Ingest Subsystem. Over 600 data products
have been identified, ranging in volume from megabytes to hundreds of gigabytes. Total
volume is on the order of dozens of terabytes. Many of the data products are stored in some

a. Items marked with an asterisk (*) in the Flow No. column are interfaces to be implemented post-Release
A.

Flow
No.

Source Destination Data Types Data Volume Frequency

2 SDPF Ingest Data Availability No-
tice

less than 1 MB daily

2 SDPF Ingest Back-up Data between 1 MB and 1 GB as required

5 TSDIS Ingest Metadata 1 days worth
of products

daily

5 TSDIS Ingest Data Availability No-
tice

less than 1 MB daily

5 TSDIS Ingest Data Products 60 (GB/day)
Processing and Repro-
cessing

5 TSDIS Ingest Algorithms between 1 MB and 1 GB as required

5 TSDIS Ingest Documents less than 1 MB as required

5 TSDIS Ingest Status less than 1 MB as required

5 TSDIS Ingest Browse Data 149 MB/day daily

5 TSDIS Ingest Directory less than 1 MB as required

5 TSDIS Ingest Guide less than 1 MB as required

5 TSDIS Ingest Schedule Adjudica-
tion Data

less than 1 MB as required

16 Users Ingest User Methods between 1 MB and 1 GB as required

16 Users Ingest Ingest Status Re-
quests

less than 1 MB as required

15 Ver-
sion 0

Ingest Migration Data greater than 1 GB varies depending on mi-
gration strategy

Table 3.1-1. Ingest Subsystem Interfaces (5 of 5)

3-9 305-CD-009-001

form of Hierarchical Data Format (HDF); however, many more products are stored in other
formats. The Ingest Subsystem software is designed to generalize the mechanism by which
data is routinely stored within the SDPS, given a set of standalone tools used to prepare
Version 0 data. Version 0 "data preparation" includes retrieval from Version 0-specific
hard media, conversion to EOS-HDF, where required, and extraction of standard metadata.

• ECS satisfies explicit performance requirements with the design described in Sections 4
and 5 of this volume.

The following subsections elaborate upon the above design drivers.

3.2.2.1 Ingest RMA Architecture

A principal objective of separating ingest from other SDPS functions is to assure the high
reliability and availability of the system for Level 0 data ingest. Ingest availability requirements
are met through the use of high reliability components in redundant configurations, as necessary.
The following paragraphs provide additional detail on ingest RMA requirements and how the
ingest architecture ensures that these requirements will be met.

The principal Level 0 data sources (e.g., EDOS, SDPF) each support a data driven architecture that
processes data within 24 hours or less from receipt of the data from the spacecraft. Once the data
is processed into Production Data Sets (PDSs) (with size based on clock time, number of packets,
or Tracking and Data Relay Satellite System [TDRSS] service session) the data must be transferred
to ECS in a timely fashion for archiving and any required higher level processing. Typically, data
transfer must be completed within several hours to free up resources at the Level 0 processing sites,
as new data sets are being received on a nearly continuous basis. The Level 0 processing sites
provide long term archiving of the PDSs in the event that data is corrupted or lost in the transfer to
ECS or within ECS itself. While it is possible to access these archived data sets if they are needed,
it is unattractive to do so from an operational standpoint due to the added time and complexity of
pulling the data from the deep archive and staging it for transfer. Therefore, the SDPS function of
receiving science data availability requirement of 0.999 must be met to reduce the number of
required data retransmissions and ensure that the needs of the overall data system are met. The
following section describes how this requirement and others which place RMA requirements on
the Ingest Subsystem of 2000 hours mean time between failures (MTBF) and 15 minutes mean
time to restore (MTTR) from a failure to operational capability will be met. A more detailed
availability analysis may be found in the Availability Models/Predictions for the ECS Project
document (515-CD-001-002).

It should be noted that certain of the sites at each ECS release are not staffed 24 hours per day, and
are subject to somewhat different operational requirements during unstaffed periods. The Ingest
Subsystem is designed to operate with minimal operator involvement, and is planned to continue
the function of ingesting data during unstaffed periods. However, certain functions that inherently
require initial operator involvement, such as initiating ingest via hard media, will not be supported
during unstaffed periods. Moreover, faults may require human involvement to reconfigure and
reboot the ingest client hosts. Therefore, the 15 minute MTTR requirement for support of the
receipt of science data will not be supported during unstaffed periods. In order to eliminate any
potential system overload, Ingest Subsystem capabilities are being sized to satisfy full 24 hour L0
data ingest requirements during staffed periods.

3-10 305-CD-009-001

The instantiation of the Ingest Subsystem varies at each site, but is based on the same architecture
concepts and classes of hardware and software. The generic Ingest Subsystem architecture is
shown in Figure 3.1-2. The ingest client software required for a specific Level 0 interface at a
given site runs on a client host computer residing in the Ingest Subsystem. Multiple ingest clients
may run on a single client host, or may be divided among multiple client hosts, depending on the
data load supported by each interface. At least one spare client host is provided at each site in order
to provide a warm backup failover capability in the event of a primary host failure. A hot backup
approach was initially considered, but was determined to be unnecessary and undesirable for
several reasons. Current EDOS requirements and architecture concepts do not support the
transmission of data to multiple targets with different application identifiers (APIDs). This makes
the implementation of a prime and hot spare ingest client host configuration more complicated, but
a warm spare configuration where the backup server may be quickly reconfigured to replace the
prime unit was determined to be sufficient to meet requirements. Commercially available
workstations of the class required for the client hosts typically support MTBFs in the 20,000 to
40,000 hour range. Calculations indicate that the use of this hardware in conjunction with
redundant working storage and data repository components will meet data ingest RMA
requirements.

Working storage and Level 0 data repository media drive and robotics devices are sized to
accommodate redundant devices or components as necessary. A combination of paper analysis
and system modeling efforts have been used to determine the final configuration necessary to meet
system performance and RMA requirements. A summary of the Ingest Subsystem sizing analysis
is presented in the ECS Ingest Subsystem Topology Analysis (440-TP-014-001).

Figure 3.1-2. Ingest Subsystem Hardware Diagram

Operations
stat ions

Cl ient
 hosts

INGEST SUBSYSTEM

Networked Ingest

Client
Supported

Local & Remote
Users & Systems

 LEGEND

Low Bandwidth Subnetwork(s)

High Bandwidth Subnetwork(s)

Disk / RAID Disk

OPS Workstations / X-Terms

Processing / Servers

Peripherals / Medi a Gen
Temporary Media

CD ROM

DATA SERVER
SUBSYSTEM

PROCESSING
SUBSYSTEM

Working
storage

L0 Archive
Repository

3-11 305-CD-009-001

3.2.2.2 Ingest Client Implementation

As shown in the context diagram in subsection 3.1.1, the Ingest Subsystem supports a wide variety
of external interfaces. The application-level protocol to set up for data transfer is potentially
different for each of the external interfaces. As a result, a separate ingest client software application
is required to facilitate data transfer for each interface. To minimize the software development
effort and make it easier to accommodate new external interfaces in the future, the external
interfaces were categorized based on common characteristics as follows:

• Automated Network Ingest by means of a Data Availability Notice (DAN) supplied to
ECS--ECS receives the DAN and schedules automated network data transfer from the
source. The DAN describes the location of the available data. ECS "gets" data from the
source within a specified time window. Note: External data providers are responsible for
developing application software to interact with ECS automated network ingest software.
The SDPF has existing design/software that may be used as a template.

• Polling Ingest with Delivery Record--ECS periodically checks an agreed-upon network
location for a Delivery Record file. The Delivery Record file contains information
identical to that in a DAN. The Delivery Record describes the location of the available
data. Note: the data location may be on a working storage device within ECS, where an
external data provider may have previously transferred the data. If a Delivery Record is
located, ECS "gets" data from the source within a specified time window.

• Polling Ingest without Delivery Record--ECS periodically checks an agreed-upon network
location for available data. All data in the location is assumed to make up a collection of
ingest data of one specific data type, with one file per data granule. If data is located, ECS
"gets" data from the source within a system-tunable time window.

• Manual data transfer mechanisms are in place for transfer of data from hard media and for
science user-controlled (interactive) network data transfer.

— Hard Media Ingest is available for authorized institutions or science users providing
data on hard media and as a backup mechanism for facilities where automated network
data transfer is temporarily unavailable. The hard media must contain information
identical to the Delivery Records described above, in a standard file format, or the data
provider must separately provide Delivery Records in the standard file format.

— Interactive Network Ingest is available for authorized science users to manually
identify data to be ingested. Science users may "put" the data into an accessible ECS
location or may request that ECS "get" the data from their workstation. Information
identical to that contained in the Delivery Record is entered by means of GUI input (or
derived by the GUI software).

Data transfer is accomplished by one of three means--file transfer protocol (ftp) "get", ftp "put", or
hard media data transfer. Ftp get involves ECS "getting" data from an external site. Ftp put
involves an external site "putting" data into ECS. Hard media data transfer involves data transfer
from one of several ingest peripheral types found at a DAAC. Kerberized ftp (kftp), providing
additional communications security services, is specified as the standard data ingest protocol.
Exceptions may be made in the case of interfaces to existing facilities, which may be granted
waivers from supporting kftp on a case-by-case basis.

3-12 305-CD-009-001

Table 3.1-2 describes each external interface in Table 3.1-1 in terms of the interface protocols used,
and the ICD in which detailed interface design information may be found:

Table 3.1-2. External Interface Protocols (1 of 2)

Interface
(facility)

Type of Primary Interface Proto-
cols

Type of Backup Interface
Protocols

Comments

SDPF Automated Network Ingest/ftp get 8mm tape Defined by SDPF ICD

TSDIS Automated Network Ingest/ftp get 8mm tape Defined by ECS/TSDIS
ICD

NOAA/
NMC
(DAO)

Polling Ingest without Delivery
Record/ftp get

None Defined by ECS/GSFC
DAAC-specific ICD

NOAA
(NESDIS)

Polling Ingest without Delivery
Record/ftp get

None Defined by ECS/
ADC(NOAA) ICD

EDOS Polling Ingest with Delivery Record/ftp
put

TBD hard media Defined by EDOS ICD
(TBS)

ASTER
DPS*

TBD hard media None Defined by ECS/IP ICD
(TBS)

EOC Automated Network Ingest/ftp get None Defined by internal inter-
face agreement

FDF* TBD TBD Defined by ECS/FDF
ICD (TBS)

Landsat-
7

Automated Network Ingest/ftp get None Defined by Landsat-7
ICD (TBS)

SCF Automated Network Ingest/ftp get 8mm tape Defined by ECS/SCF
ICD

Users* Interactive Network Ingest/ftp get or
put

None Defined by TBD

Version 0
(GSFC)

Hard Media Ingest (8mm tape) and/or
Automated Network Ingest/ftp get
and/or Interactive Network Ingest/ftp
get or put

None Defined by ECS/GSFC
DAAC-specific ICD

Version 0
(LaRC)

Automated Network Ingest/ftp get
plus Interactive Network Ingest/ftp get
or put

TBD Defined by ECS/LaRC
DAAC-specific ICD

Version 0
(MSFC)

Hard Media Ingest (8mm tape) None Defined by ECS/MSFC
DAAC-specific ICD

Version 0
(JPL)*

TBD TBD Defined by the TBS ECS/
JPL DAAC-specific ICD

Version 0
(NSIDC)*

TBD TBD Defined by the TBS ECS/
NSIDC DAAC-specific
ICD

Version 0
(ASF)*

TBD TBD Defined by the TBS ECS/
ASF DAAC-specific ICD

3-13 305-CD-009-001

*Interfaces marked with an asterisk are implemented post-Release A; note that EDOS, EOC, and Landsat-7
interfaces are implemented only to the extent needed for purposes of early interface testing at Release A.

3.2.2.3 Version 0 Migration Impact on the Ingest Subsystem

Requirements that dictate the volume and other characteristics of Version 0 data to be migrated in
the Release A timeframe from the Version 0 DAACs into the ECS are a critical design driver. The
Version 0 data widely varies in format, structure, volume, and transfer mechanism. Previous
design team experience indicates that migration of existing data requires a major engineering
effort, including data analysis; data conversion and reformatting tool development; extensive
integration and test (to ensure data integrity); system analysis of required hardware components
(e.g., networks, storage, etc.); and maintenance and operations (to perform the actual migration and
data validation).

The design team has proposed a process to ensure the successful migration of Version 0 data into
the ECS. The process is documented in a separate Data Migration Plan white paper (160-TP-002-
001, Version 1). That white paper describes the process by which Version 0 data is transformed
into a standard form that is recognizable by the Ingest Subsystem. The white paper assumes that
the Ingest Subsystem is structured to facilitate ingest of data in a standard form.

As described in the following sections, the Ingest Subsystem is structured so that data is ingested
into ECS by a standard mechanism once the data is preprocessed (e.g., data conversions and
reformatting, metadata extraction, and metadata quality checking). Therefore, the primary task of
Version 0 migration--data preprocessing--may be performed externally from the Ingest Subsystem.
In addition, the Ingest Subsystem design provides standard ingest interfaces (as described in
previous subsections). Therefore, the selection of the data transfer mechanism (e.g., 8mm tape,
network transfer) for a specific Version 0 data product may require additional copies of Ingest
Subsystem hardware, but does not require new (i.e., undesigned) Ingest Subsystem hardware or
software. The potential use of a data transfer media that is not already supported in Release A
would need to be evaluated on a case-by-case basis.

Accordingly, the Version 0 migration effort may be planned as a separate activity from the Ingest
Subsystem development. A proposal for development of a "Version 0 Migration Facility" has been
formulated and will be reported on at the Critical Design Review (CDR).

Interface
(facility)

Type of Primary Interface Proto-
cols

Type of Backup Interface
Protocols

Comments

Version 0
(EDC)*

TBD TBD Defined by the TBS ECS/
EDC DAAC-specific ICD

Version 0
(CIESIN)*

TBD TBD Defined by the TBS ECS/
CIESIN DAAC-specific
ICD

Version 0
(ORNL)*

TBD TBD Defined by the TBS ECS/
ORNL DAAC-specific
ICD

Table 3.1-2. External Interface Protocols (2 of 2)

3-14 305-CD-009-001

3.2.2.4 Impact of Performance Requirements

TRMM Expedited Data Ingest

The Ingest CSCI assigns different priorities to each external site (e.g., the SDPF). The capability
to assign a different priority to each category of data within the site (e.g., production Level 0 data/
expedited (equivalent to quicklook) data) is available as an extension to the design, but is not
currently implemented. Our analysis indicates that the rate of ingest of SDPF data (delivery of
Level 0 data once per day; delivery of expedited data three times per day) and the relatively small
data volumes (much less than one gigabyte) may be handled by the existing priority scheme.

TRMM I/O Throughput

Based upon Level 0 data volumes and loading estimated in Appendix A of the TRMM IRD ECS
modeled the nominal data I/O throughput. Note: the non-Level 0 data flow into Data Server
hardware, and therefore do not impact the Ingest HWCI. In addition, the following TRMM IRD
requirements for TSDIS reprocessing imply the peak throughput:

TRMM3100 -- ...ECS shall also daily ingest an average of 2 days worth of reprocessed data from
TSDIS. (MSFC interface)

TRMM4090 -- ...ECS shall also daily ingest an average of 2 days worth of reprocessed data from
TSDIS. (GSFC interface)

Assuming that Level 0 data is retrieved for reprocessing at this same rate, the Ingest HWCI is sized
for three days' data volume (one day's worth of Level 0 data ingest, two days' worth of Level 0 data
retrieved from storage). The hardware sizing information is documented in section 5 of this
document and in the DAAC-specific volumes for LaRC and MSFC.

4-1 305-CD-009-001

4. INGST - Ingest CSCI

4.1 CSCI Overview
The Ingest CSCI is responsible for the receipt of data arriving at a site and the physical placement
of data into the site's storage hierarchy. A provider site within EOSDIS will normally need to
ingest a wide variety of data types to support the services it wishes to offer. These data may be
delivered through different interfaces (network file transfer, hard media, hard copy, etc.), with
varying management approaches to these interfaces. This interface heterogeneity and the need to
support extendibility and new data/interfaces as algorithms and provider functionality changes,
lead to a design in which the ingest functionality is isolated from other subsystems within the
segment design.

Although each instance of the Ingest CSCI has to deal with the characteristics of the specific
external interface it is managing, the general functionality is similar in each case.

• Ingest processing is either event-driven or timer-driven. For automated network ingest
(e.g., SDPF), data centers send Data Availability Notices to the DAACs to indicate the
availability of data. For hard media ingest, the "data availability notice" is entered by
DAAC operations staff at a GUI interface. Similarly, for interactive network ingest under
science user control, the "data availability notice" is entered by the science user at a GUI
interface. For timer-driven ingest (e.g., NESDIS), on the other hand, data centers transfer
data to an agreed-upon network location and ECS ingest clients periodically check ("poll")
for the existence of new data.

• Depending on the interface, data may be transferred by either a data "get" or a data "put".
A data get is performed by the Ingest CSCI under Ingest CSCI control. A data put is
performed by another data center under that data center's control.

• The Ingest CSCI performs transmission checks relevant to the transfer mechanism (e.g.
data quality, data gaps, data redundancy, missing files, etc.) and notifies the data source of
success or failure. Failure results in a request to resend or in notification of the operations
staff. The DAAC operations staff monitors the status of active ingest processing.

• The Ingest CSCI extracts sufficient metadata to allow the data to be retrieved at a later time
from the Data Server. The metadata information is contained within the data file, within a
separate metadata file in standard format associated with the data, or within the information
provided to request ingest. The form in which metadata is provided is determined by the
Interface Control Document (ICD) defined for the specific I/F. Some portion of the
metadata is checked for quality (e.g., all required metadata parameters available,
parameters within a range of values, etc.). Additional metadata, such as the time of ingest,
is determined by the Ingest CSCI.

• When the collection of data is complete (i.e., all referenced data are available), the Ingest
CSCI requests insertion of the data into an appropriate Data Server.

4-2 305-CD-009-001

• The Ingest CSCI records the successful or unsuccessful transfer of data into the site in an
ingest history log, with detailed information in an error log. The DAAC operations staff
and System Management Center (SMC) staff may interrogate the ingest history log and the
error log. In addition, the Ingest CSCI returns the completion status for the ingest data
transfer to the data ingest requester.

4.2 CSCI Context
The context diagram for the Ingest CSCI is identical to that of the Ingest Subsystem, since the
Ingest CSCI is the only CSCI for the subsystem (see Figure 3.1-1). Table 4.2-1 shows the CSCI
service interfaces provided to entities external to the CSCI.

4.3 Ingest CSCI Object Model
Figures 4.3-1 through 4.3-5 show the object classes that model the Ingest Subsystem. Subsequent
paragraphs describe each of the object classes in terms of their parent class, purpose and
description, and their critical attributes, operations, and associations. Note: Program Design
Language (PDL) for all non-trivial object operations is included in Appendix B of this document.

Table 4.2-1. Ingest CSCI Service Interfaces
Interface Input Data Output Data Description

Ingest Server.Create
Session

External Data Provider Ingest_Status Sets up an ingest request session
connection .

Ingest Session. Re-
ceive Message

Data Availability Notice
Data Delivery Ack

Data Availability
Ack
Data Delivery No-
tice

Provides the application-level pro-
tocol for automated network data
transfer.

Media Ingest Ses-
sion. Receive Mes-
sage

Hard Media Ingest Re-
quest

Ingest_Status Provides authorized operations
staff the means to enter, by means
of GUI input, information required
to ingest hard media.

Network Ingest Ses-
sion. Receive Mes-
sage

Network Ingest Request Ingest_Status Provides authorized science users
the means to enter, by means of
GUI input, information required to
ingest data by network data trans-
fer.

Status Monitor. Re-
ceive Request

User_Identifier Ingest Request
(list)

Provides the status of a) all or se-
lected ongoing ingest requests (au-
thorized operations staff) or b)
ongoing requests for a given user
(specific user).

Log Monitor. Receive
Message

Ingest Log Request Ingest Log Provides the status of all or select-
ed completed ingest requests to
authorized operations staff.

4-3
305-C

D
-009-001

InSession

InRequest

InRequestList

InDataPreprocessTask

InDataServerInsertionTask

InDataTransferTask

InTransferredData

InFile InResourceIF

myDataTypeId

SendCancel()

SendInsert()

SendResume()

SendSuspend()

InRequestManager

myCurrentPointer

myListCounter

myListHead

myListTail

AddRequest(struc*Request)

DeleteRequest(int RequestId)

GetNext(int RequestId)

ListAll(viod)

SearchRequest(int RequestId)

InThreshold

InServer

continued

continued

continued

myFileId

myFileType

myFileLocation

myFileVolume

Check()

Convert()

Create()

Extract()

GetFileId()

Read()

Reformat()

Transfer()

GetFileType()

GetFileVolume()

GetFileLocation()

Write()

InSystemThreshold

InExternalDataProviderThreshold

InDAN

myDANSeqNo

myDataProvider

myDataTypeCount

myDataTypeList

Check(char *DAAmsgPtr)

FillDAN(int IngestType, char *ParsedKeywords[])

GenerateDAN(char *Dir, char :*DataType, int DANSeqNo, char *DANFile)

ParsedPVL(char *PVLBuffer, int PVLLen)

myCurrentRequests

myCurrentDataVolumeKeep

GetCurrentDataVolume(void)

GetCurrentRequests(void)

UpdateCurrentDataVolume(int UpdateValue)

UpdateCurrentRequests(int UpdateValue)

CreateRequest(DANmsg* DANmsgPtr)

CreateRequest(char* DANfile)

DeleteRequest(DCEObjRefT* ObjReference)

CancelRequest(DCEObjRefT* ObjReference)

RestoreRequestList(void)

myDataType

myInputList

Cancel()

Resume()

Suspend()

InDataPreprocessTask()

CleanUp()

continued

continued

myFileVolumeList

myDataTypeIdList

myDataLocation

myFileIdList

GetFileInfo(char *DataId, char *DataLocation, int FileVolume)

GetDtInfo(char *DataTypeId)

myTotalDataVolume

myTotalRetryCounter

CancelTransfer(void)

GetDTInfo(char *DataTypeID)

ResumeTransfer(void)

SuspendTransfer(void)

myResourceId

myResourceType

AllocateResource(int ResourceId)

DeallocateResource(int ResourceId)

GetFileInfo(Char *FileId, char *FileLocation, int FileSize)

CopyFile(void)

ListFiles(void)

myExternalDataProvider

myIngestPriority

myVolumeThreshold

myMaximumRequests

myRetryThreshold

GetExternalDataProvider(void)

GetIngestPriority(void)

GetMaximumRequests(void)

GetRetryThreshold(void)

GetVolumeThreshold(void)

SetExternalDataProvider(char *NewDataProvider)

SetIngestPriority(int NewPriority)

SetMaximumRequests(int NewMaxRequestsThreshold)

SetRetryThreshold(int NewMaxRetriesThreshold)

SetVolumeThreshold(int NewVolume)

myIngestVolumeThreshold

myIngestRequestThreshold

GetIngestRequestThreshold(void)

GetIngestVolumeThreshold(void)

SetIngestRequestThreshold(int NewRequestTheshold)

SetIngestVolumeThreshold(int NewVolumeThreshold)
mySessionCount

StartServer(void)

myAggregateLength

myDataTypeIdList

myExpirationDateTime

myExternalDataProvider

myIngestType

myProcessingEndDateTime

myProcessingStartDateTime

myRequestId

myRequestPriority

myRequestState

mySequenceId

mySessionId

myTotalFileCount

InRequest(DANmsg *DANmsgPtr)

InRequest(char* DANfile)

Cancel(void)

ChangeState(String *NewState)

Check(void)

GetRequestId(void)

GetSessionId(void)

GetState(void)

ProcessRequest(void)

myClientId

mySessionGWBH

mySessionId

InitSessServer(char *GatewayBH)

ProcessRequest(void)

ResumeSession(void)

SuspendSession(void)

TerminateSession(void)

TransferDataByBulk

TransferDataByFile

[DISTR OBJ]

P[PERSISTENT CLASS]

 _ : char*

 + : char* status

 + : char* status

 + : char* status

 + : char* status

 _ : int *CurPointer

 _ : int Counter

 _ : int *StartPointer

 _ : int EndPointer

 + : int

 + : int

 + : int

 + : int

 + : int

P[PERSISTENT CLASS]

[DISTR OBJ]

 _ : char *

 _ : char *

 _ : char *

 _ : int

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : int

 _ : char *

 _ : int

 _ : struct**

 +

 +

 + : int

 +

 _ : int

 _ : int

 + : int

 + : int

 _ : int

 _ : int

 + : DCEObjRefT*

 + : DCEObjRefT*

 + : int

 + : int

 _ : int

 _ : char*

 _ : char*

 + : char* status

 + : char* status

 + : char* status

 +

 _ : int[]

 _ : char*[]

 _ : char*[]

 _ : char*[]

 + : int

 + : int

 _ : int

 _ : int

 + : int

 + : int

 + : int

 + : int

 _ : int

 _ : int

 + : int

 + : int

 + : int

 + : int

 + : int

 _ : char*

 _ : int

 _ : int

 _ : int

 _ : int

 + : char*

 + : int

 + : int

 + : int

 + : int

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : int

 _ : int

 + : int

 + : int

 + : void

 + : void
 _ : int

 + : int

 _ : int

 _ : struct **

 _ : char*

 _ : char*

 _ : char*

 _ : DateTime

 _ : DateTime

 _ : int

 _ : int

 _ : char*

 _ : int

 _ : int

 _ : int

 + : int

 + : int

 + : int

 _ : int

 + : int

 _ : int

 + : int

 _ : char*

 + : int

 _ : char *

 _ : char *

 _ : int

 + : int

 + : int

 + : int

 + : int

 + : int

Creates

IsManagedBy

ResidesOn

Populates

AllocatesResourceFrom,

TransfersFilesFrom

IsAccessedBy

ProvidesThresholdsfor

Manages

IsStoredIn
InitiatesDataTransferVia

IsPreprocessedBy

SendsInsertRequestVia

Figure 4.3-1. In_Ingest_Main_Object_Model Diagram

4-4
305-C

D
-009-001

InRequest

InDataPreprocessTask

InDataServerInsertionTask

InDataType

InDataPreprocessList

InDataTypeTemplate

InFileTypeTemplate

InFile

InScienceData
InMetadata

InMetadataTool

InSourceMCF

InPVMetadata
InBOMetadata

InBOBinMetadata

InSDMetadata

myDataType

myDataType

myFileType

myMetadataSpecialization

myScienceSpecialization

mySourceMCF

myArchivalFlag

myFileClass

myMetadataTargetName

myScienceTargetName

myDataTypeId

InHDFMetadata

myDataType

myTaskNumber

myTimeInitiated

myParameterDelimiter

myValueDelimiter

myLineDelimiter

mySeparator

Preprocess

Preprocess

Look_Up_Table

Preprocess Preprocess

myInSourceMCF

myInFile

Preprocess

myInFile

Preprocess

mypthread

PGS_MET_INIT

PGS_MET_Set

PGS_MET_WriteFile

PGS_MET_GetNext

myDataType

myFileType

myVersionNumber

GetNext

myFileId

myFileVolume

Check()

Transfer()

Convert()

Create()

Extract()

GetFileId()

Read()

Reformat()

Write()

InDataTypeTemplate

GetDTInfo

InDataPreprocessTask

Cancel

Suspend

Resume

Preprocess

InFileTypeTemplate

GetFTInfo

myRequiredFlag

myMinNum

myMaxNum

InGRIBDataInFDFData InReformatData

Preproces Preprocess Preprocess

myListClass

SendInsert

SendCancel

SendResume

SendSuspend

AddToList

myDataType

myInputList

myInputList

InSourceMCF

GetParInfo

AddParInfo

DeleteParInfo

InDataType

InDataPreprocessList

InPVMetadata

InBOMetadata

InBOBinMetadata

InSDMetadata InHDFMetadata

InFDFData InGRIBData InReformatData

ConvertBintoASCII

myInsertionList

myFileTypeArray

CleanUp

InDataServerInsertionTask

InTemplateEditor

Preprocess

TemplateType

ProcessRequest(int TemplateType)

myFileTypeArray

DsCIDescriptor

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : char*

 _ : char*

 _ : char*

 _ : char*

 _ : char*

 _ : char*

 _ : char

 _ : char

 _ : char*

 _ : char*

 _ : char*

 _ : char*

 _ : int

 _ : float

 _ : char*

 _ : char*

 _ : char*

 _ : char*

 + : char* status

 + : char* status

 _ : char*

 + : char* status + : char* Status

 _ : char*

 _ : char* _ : char*

 _ : int

 + : char* parameter

 _ : char*

 _ : char*

 _ : int

 + : char* filename

 _ : char *

 _ : int

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 + : char* status

 + : char* status

 + : char* status

 + : char* Status, char* InsertionList

 _ : char

 _ : int

 _ : int

 + : char* status + : char* Status + : char* Status

 _ : char

 + : char* status

 + : char* status

 + : char* status

 + : char* status

 _ : char*

 _ : char*

 _ : char*

 _ : char* status

 _ : char*

 _ : char * FileType

 +

 _ : int

 + : int

 _ : char* FileType

creates

populates

guides

guides

defines

references

adds_to

submits

processes

utilizes

manipulates

maintains

maintains

maintains

SendsInsertRequestVia

InitiatePreprocessingVia

guides

Figure 4.3-2. In_Ingest_Preprocessing Object Model Diagram,

4-5
305-C

D
-009-001

InSession

InRequest

InRequestList

myRequestID

myDirectoryID

myFileID

myFileSize

InRequestManager

myRecordSize

myCurrentPointer

myListCounter

myListHead

myListTail

AddRequest(struc*Request)

DeleteRequest(int RequestId)

GetNext(int RequestId)

ListAll(viod)

SearchRequest(int RequestId)

InThreshold

InServer

myBeginningDateTime

InRequestFileInfo(void)

~InRequestFileInfo(char* myRequestID)

SearchTable(char* myRequestID)

InRequest_C

InRequest_S

InRequestManager_C

InRequestManager_S

continued

InSystemThreshold

InExternalDataProviderThreshold

CreateRequest(DANmsg* DANmsgPtr)

CreateRequest(char* DANfile)

CreateRequest(DANmsg* DANmsgPtr)

CreateRequest(char* DANfile)

InDAN

myDANSeqNo

myDataProvider

myDataTypeCount

myDataTypeList

Check(char *DAAmsgPtr)

FillDAN(int IngestType, char *ParsedKeywords[])

GenerateDAN(char *Dir, char :*DataType, int DANSeqNo, char *DANFile)

ParsedPVL(char *PVLBuffer, int PVLLen)

myCurrentRequests

myCurrentDataVolumeKeep

GetCurrentDataVolume(void)

GetCurrentRequests(void)

UpdateCurrentDataVolume(int UpdateValue)

UpdateCurrentRequests(int UpdateValue)

CreateRequest(DANmsg* DANmsgPtr)

CreateRequest(char* DANfile)

DeleteRequest(DCEObjRefT* ObjReference)

CancelRequest(DCEObjRefT* ObjReference)

RestoreRequestList(void)

InRequestProcessHeader

InRequestSummaryHeader

InRequestProcessData

InRequestSummaryData

InRequestFileInfo

continued

myIngestVolumeThreshold

myIngestRequestThreshold

GetIngestRequestThreshold(void)

GetIngestVolumeThreshold(void)

SetIngestRequestThreshold(int NewRequestTheshold)

SetIngestVolumeThreshold(int NewVolumeThreshold)

myExternalDataProvider

myIngestPriority

myVolumeThreshold

myMaximumRequests

myRetryThreshold

GetExternalDataProvider(void)

GetIngestPriority(void)

GetMaximumRequests(void)

GetRetryThreshold(void)

GetVolumeThreshold(void)

SetExternalDataProvider(char *NewDataProvider)

SetIngestPriority(int NewPriority)

SetMaximumRequests(int NewMaxRequestsThreshold)

SetRetryThreshold(int NewMaxRetriesThreshold)

SetVolumeThreshold(int NewVolume)

myRequestID

myDataGranuleID

myDataType

myDataGranuleVolume

myFinalStatus

InRequestSummaryData(void)

~InRequestSummaryData(char* myRequestID)

SearchTable(char *myRequestID)

myRequestID

InRequest_C(DANmsg* DANmsgPtr)

InRequest_C(char* DANfile)

myRequestID

InRequest_S(DANmsg* DANmsgPtr)

InRequest_S(char* DANfile)

myRequestID

mySessionID

mySequenceID

myExpirationDateTime

myRequestState

myRequestPriority

InRequestProcessHeader(void)

~InRequestProcessHeader(char* myRequestID)

SearchTable(char* myRequestID)

myRequestId

myDataGranuleID

myDataDescriptor

myDataVersion

myDataGranuleState

InRequestProcessData(void)

~InRequestProcessData(char* myRequestID)

SearchTable(char* myRequestID)

myRequestID

myExternalDataProvider

myMission

myTotalDataGranules

myTotalFileCount

myAggregateLength

myProcessingStartDateTime

myProcessingEndDateTime

InRequestSummaryHeader(void)

~InRequestSummaryHeader(char* myRequestID)

SearchTable(char *myRequestID)

myClientId

mySessionGWBH

mySessionId

InitSessServer(char *GatewayBH)

ProcessRequest(void)

ResumeSession(void)

SuspendSession(void)

TerminateSession(void)

mySessionCount

StartServer(void)

InPollingThreshold

myPollingTimer

SetTimer(int)

GetTimer(void)

myAggregateLength

myDataTypeIdList

myExpirationDateTime

myExternalDataProvider

myIngestType

myProcessingEndDateTime

myProcessingStartDateTime

myRequestId

myRequestPriority

myRequestState

mySequenceId

mySessionId

myTotalFileCount

InRequest(DANmsg *DANmsgPtr)

InRequest(char* DANfile)

Cancel(void)

ChangeState(String *NewState)

Check(void)

GetRequestId(void)

GetSessionId(void)

GetState(void)

ProcessRequest(void)

[DISTR OBJ]

P[PERSISTENT CLASS]

 _ : char*

 _ : char*

 _ : char*

 _ : int

 _ : int

 _ : int *CurPointer

 _ : int Counter

 _ : int *StartPointer

 _ : int EndPointer

 + : int

 + : int

 + : int

 + : int

 + : int

P[PERSISTENT CLASS]

[DISTR OBJ]

 _ : DateTime

 + : int

 + : int

 + : int

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 + : int

 + : int

 + : int

 + : int

 _ : int

 _ : char *

 _ : int

 _ : struct**

 +

 +

 + : int

 +

 _ : int

 _ : int

 + : int

 + : int

 _ : int

 _ : int

 + : DCEObjRefT*

 + : DCEObjRefT*

 + : int

 + : int

 _ : int

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : int

 _ : int

 + : int

 + : int

 + : void

 + : void

 _ : char*

 _ : int

 _ : int

 _ : int

 _ : int

 + : char*

 + : int

 + : int

 + : int

 + : int

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : char*

 _ : char*

 _ : char*

 _ : int

 _ : int

 + : int

 + : int

 + : int

 _ : char *

 + : int

 + : int

 _ : char *

 + : int

 + : int

 _ : char*

 _ : char*

 _ : int

 _ : DateTime

 _ : char*

 _ : int

 + : int

 + : int

 + : int

 _ : char*

 _ : char*

 _ : char*

 _ : char*

 _ : char*

 + : int

 + : int

 + : int

 _ : char*

 _ : char*

 _ : char*

 _ : int

 _ : int

 _ : int

 _ : DateTime

 _ : DateTime

 + : int

 + : int

 + : int

 _ : char *

 _ : char *

 _ : int

 + : int

 + : int

 + : int

 + : int

 + : int

 _ : int

 + : int

P[PERSISTENT CLASS]

 _ : int

 + : int

 + : int

 _ : int

 _ : struct **

 _ : char*

 _ : char*

 _ : char*

 _ : DateTime

 _ : DateTime

 _ : int

 _ : int

 _ : char*

 _ : int

 _ : int

 _ : int

 + : int

 + : int

 + : int

 _ : int

 + : int

 _ : int

 + : int

 _ : char*

 + : int

Creates

IsManagedBy

IsAccessedBy

ProvidesThresholdsfor

Manages

IsStoredIn

Stores

IsStoredIn

IsStoredIn

IsStoredIn

Figure 4.3-3. In_Ingest_Request_Processing_Object_Model Diagram

4-6
305-C

D
-009-001

InSession

InServer

InRequest

continued...

myRequestList

mySessionId

mySessionState

AddRequest(RequestInfo* Request)

DeleteRequest(int DANSequenceNum)

ProcessRequest(void)

ResumeSession(void)

SuspendSession(void)

TerminateSession(void)

InServerExtRPC_C

CsGateWay

InSessionExtRPC_C

InMessage

InDAN

InShortDAA

InLongDAA

InLongDDN

InShortDDN

myDANSeqNo

myDataProvider

myDataTypeCount

myDataTypeList

Check(char *DAAmsgPtr)

FillDAN(int IngestType, char *ParsedKeywords[])

GenerateDAN(char *Dir, char :*DataType, int DANSeqNo, char *DANFile)

ParsedPVL(char *PVLBuffer, int PVLLen)

myShortDAA

FillDAA(int DAAStatus, int DANSeqNo)

myLongDAA

FillDAA(int Status[],char *DataType[],char *Descriptor, int FileGroupCount, int

DANSeqNo)

InServerExtRPC_S

InSessionExtRPC_S

InSessionEcsRPC_S

InSessionEcsRPC_C

InServerIntRPC_S

InServerIntRPC_C

InSessionIntRPC_C

InSessionIntRPC_S

ecsDDN(handle_t GatewayBH, char *DDN, error_status_t ecsDDNstatus)

ecsDDN(handle_t GatewayBH, char *DDNmsg, error_status_t ecsDDNstatus)

DeleteSession(handle_t InServerBH, int SessionId, error_status_t *DelSessStatus)

DeleteSession(handle_t InServerBH, int SessionId, error_status_t *DelSessStatus)

CreateSession(handle_t InServerBH, char *GatewayStringBH, error_status_t

*CreateSessStatus)

extDDA(handle_t InSessBH, char *DDAmsg, error_status_t *extDDAstatus)

extDAN(handle_t InSessBH, char *DANmsg, char **DAAmsg, error_Status_t

*extDANstatus)

extDDA(handle_t InSessBH, char *DDAmsg, error_status_t *status)

extDAN(handle_t InSessBH, char *DANmsg, char **DAAmsg, error_status_t

*extDANstatus)

IntDDN(handle_t InSessBH, char *DDN, error_status_t IntDDNstatus)

InDDN(handle_t InSessBH, char *DDN, error_status_t InDDNstatus)

InRequestInfo

DANSeqNum

RequestId

InRequestInfo(int SeqNum, int ReqId)

AddRequest(int RequestId, int DANseqNum)

DeleteRequest(int DANSeqNum)

GetRequestCount(void)

ListRequests(void)

SearchRequest(int DANSeqNum)

~InRequestInfo(void)

myLongDDN

FillDDN(int Status[], char *Direcotry, char *FileId, int FileCount, int

DANSeqNo)

GetMsgLength(char *MsgPtr)

InMessage()

myShortDDN

FillDDN(int DDNStatus, int DANSeqNo)

InSessionInfo

SessionID

ClientID

DeleteSession(int SessionID)

SearchSession(int SessionID)

SearchSession(char *ClientID)

ListSessions(void)

mySessionCount

StartServer(void)

CreateSession(handle_t InServerBH, char *GatewayStringBH, error_status_t

*CreateSessStatus)

myAggregateLength

myDataTypeIdList

myExpirationDateTime

myExternalDataProvider

myIngestType

myProcessingEndDateTime

myProcessingStartDateTime

myRequestId

myRequestPriority

myRequestState

mySequenceId

mySessionId

myTotalFileCount

InRequest(DANmsg *DANmsgPtr)

InRequest(char* DANfile)

Cancel(void)

ChangeState(String *NewState)

Check(void)

GetRequestId(void)

GetSessionId(void)

GetState(void)

ProcessRequest(void)

[DISTR OBJ]

[DISTR OBJ]

 _ : int

 + : int

 + : int

 + : int

 + : int

[DISTR OBJ]

[DISTR OBJ]

 _ : int

 _ : char *

 _ : int

 _ : struct**

 +

 +

 + : int

 +

 _ : ShortDAAmsg

 +

 _ : LongDAAmsg

 +

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

P[PERSISTENT CLASS]

 _ : int

 _ : int

 +

 +

 +

 +

 +

 +

 _ : LongDDNmsg

 +

 +

 +

 _ : Short DDN msg

 +

P[PERSISTENT CLASS]

 _ : int

 _ : char *

 + : int

 + : int

 + : int

 + : int

 _ : int

 + : int

 + : int

 _ : int

 _ : struct **

 _ : char*

 _ : char*

 _ : char*

 _ : DateTime

 _ : DateTime

 _ : int

 _ : int

 _ : char*

 _ : int

 _ : int

 _ : int

 + : int

 + : int

 + : int

 _ : int

 + : int

 _ : int

 + : int

 _ : char*

 + : int

Manages

Creates

IsInvokedBy

Invokes

Receives/Sends

IsInvokedBy

IsInvokedBy

Invokes

Manages

IsManagedBy

Figure 4.3-4. In_Ingest_Session_Manager_Object Diagram

4-7
305-C

D
-009-001

InSession

InServer

InGUISession InPollingIngestSession

InRequestController

InStatusMonitor

InThresholdController

InLogMonitor
InMediaIngest

InNetworkIngest

InRequestList

InRequest

InHistoryLog

continued...

InThreshold

myPollingTimer

CleanupDirectory(void)

DeliverResponse(char *ResponseFile)

ProcessRequest(char * FileInfo)

myCurrentPointer

myListCounter

myListHead

myListTail

AddRequest(struc*Request)

DeleteRequest(int RequestId)

GetNext(int RequestId)

ListAll(viod)

SearchRequest(int RequestId)

InTemplateEditor

TemplateType

ProcessRequest(int TemplateType)

myNewThreshold

myThresholdType

ProcessRequest(int ThresholdType, int NewValue)

myLogCriteria

myLogName

ProcessRequest(struct * LogCriteria, char *LogName)

CheckPrivilege(char *UserName)

SaveRequestToFile(char *FileName)
myRequestId

myUpdateType

ProcessRequest(int RequestId, int UpdateType)

myRequestCriteria

myRequestIdList

myRequestCriteria

myRequestIdList

myRequestCriteria

myRequestIdList

ProcessRequest(struct *RequestCriteria, int RequestIDList[])

CheckPrivilege(char *UserID)

ReceiveMsg(void)

SendMsg(void)

myEntryCounter

myEventEntry

myLogName

GetEvent(char *LogName, struct *EventEntry)

WriteEvent(char *LogName, struct *EventEntry)

myClientId

mySessionGWBH

mySessionId

InitSessServer(char *GatewayBH)

ProcessRequest(void)

ResumeSession(void)

SuspendSession(void)

TerminateSession(void)

mySessionCount

StartServer(void)

myAggregateLength

myDataTypeIdList

myExpirationDateTime

myExternalDataProvider

myIngestType

myProcessingEndDateTime

myProcessingStartDateTime

myRequestId

myRequestPriority

myRequestState

mySequenceId

mySessionId

myTotalFileCount

InRequest(DANmsg *DANmsgPtr)

InRequest(char* DANfile)

Cancel(void)

ChangeState(String *NewState)

Check(void)

GetRequestId(void)

GetSessionId(void)

GetState(void)

ProcessRequest(void)

[DISTR OBJ]

[DISTR OBJ]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : int

 + : int

 +

 + : int

 _ : int *CurPointer

 _ : int Counter

 _ : int *StartPointer

 _ : int EndPointer

 + : int

 + : int

 + : int

 + : int

 + : int

 _ : int

 + : int

 _ : int

 _ : int

 +

 _ : struct *

 _ : char *

 + : int

 + : int

 +
 _ : int

 _ : int

 +

 _ : struct *

 _ : int []

 +

 + : int

 + : int

 + : int

 _ : int

 _ : struct *EventEntry

 _ : char *

 +

 +

 _ : char *

 _ : char *

 _ : int

 + : int

 + : int

 + : int

 + : int

 + : int

 _ : int

 + : int

 _ : int

 _ : struct **

 _ : char*

 _ : char*

 _ : char*

 _ : DateTime

 _ : DateTime

 _ : int

 _ : int

 _ : char*

 _ : int

 _ : int

 _ : int

 + : int

 + : int

 + : int

 _ : int

 + : int

 _ : int

 + : int

 _ : char*

 + : int

Manages

Creates

Accesses

Maintains

QueriesRequest(s)From

UpdatesRequestFrom

Figure 4.3-5. In_Ingest_Session_Object_Model Diagram

4-8 305-CD-009-001

4.3.1 CsGateWay Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
The Gateway translates TCP/IP socket call to the corresponding RPC function.

Attributes:

None

Operations:

None

Associations:

The CsGateWay class has associations with the following classes:
Class: InSessionExtRPC_C Invokes - The Gateway object interfaces with the
InSessionExtRPC object to deliver the DAN and DDA data messages received from the
external Client to Ingest Session.
Class: InServerExtRPC_C IsInvokedBy - The Gateway object interfaces with the
InServerExtRPC to initiate a new Ingest Session through the Ingest Server.

4.3.2 DsCIDescriptor Class

Parent Class: Not Applicable

Public: No
Distributed Object: No
Purpose and Description:
This class is a Data Server Subsystem class and therefore its attributes and operations are
defined in the Data Server Subsystem documentation. The DsCIDescriptor class provides
the Preprocessing CSC services to access targetMCFs and validate metadata files.

Attributes:

None

4-9 305-CD-009-001

Operations:

Associations:

The DsCIDescriptor class has associations with the following classes:
Class: InMetadata guides - The DsCIDescriptor class guides the InMetadata class by
providing services to access target MCFs and validate metadata files.

4.3.3 InBOBinMetadata Class

Parent Class: InBOMetadata
Public: No
Distributed Object: No
Purpose and Description:
This class provides services to preprocess byte ordered binary data.

Attributes:

Look_Up_Table - This attribute defines the appropriate look-up table for conversion from
binary to ASCII.
Data Type: char*
Privilege: Private
Default Value:

Operations:

ConvertBintoASCII - This operation converts binary data to ASCII values through the use of
a data/file type specific look-up table.
Arguments:
Return Type: char* status
Privilege: Private

InBOBinMetadata - This is the constructor service.
Arguments:

Associations:

4-10 305-CD-009-001

The InBOBinMetadata class has associations with the following classes:
None

4.3.4 InBOMetadata Class

Parent Class: InMetadata
Public: No
Distributed Object: No
Purpose and Description:
This class provides services to preprocess byte ordered data.

Attributes:

All Attributes inherited from parent class

Operations:

InBOMetadata - This is the constructor class.
Arguments:

Preprocess - This operation will extract values from byte ordered input files based on byte
position information. It will access the correct MCFs and interact with the InMetadataTool
Class to produce a metadata file which is acceptable to the Data Server Subystem.
Arguments:
Return Type: char* status
Privilege: Public

Associations:

The InBOMetadata class has associations with the following classes:
None

4.3.5 InDAN Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:

4-11 305-CD-009-001

This is the DAN (Data Availability Notice) is received from the external Client. The object
class contains services to access information in the DAN.

Attributes:

myDANSeqNo - The identifier of the DAN data message.
Data Type: int
Privilege: Private
Default Value:

myDataProvider - Indicates who provides the data for ingest.
Data Type: char *
Privilege: Private
Default Value:

myDataTypeCount - Indicates the total number of data types in the DAN.
Data Type: int
Privilege: Private
Default Value:

myDataTypeList - This is a list that contains information about the file (e.g., file name,
size, location).
Data Type: struct**
Privilege: Private
Default Value:

Operations:

Check - Verifies the integrity of the DAN components.
Arguments: char *DAAmsgPtr
Return Type: Void
Privilege: Public

FillDAN - Fills the DAN information into the class data memory after the DAN
information is parsed.
Arguments: int IngestType, char *ParsedKeywords[]
Return Type: Void
Privilege: Public

GenerateDAN - Generates a DAN file with file information retrieved from the given
directory location.
Arguments: char *Dir, char :*DataType, int DANSeqNo, char *DANFile
Return Type: int

4-12 305-CD-009-001

Privilege: Public

ParsedPVL - Extracts information from the DAN and puts the information into a data
memory.
Arguments: char *PVLBuffer, int PVLLen
Return Type: Void
Privilege: Public

Associations:

The InDAN class has associations with the following classes:
Class: InRequest IsStoredIn - The InDAN object information is stored in InRequest.

4.3.6 InDataPreprocessList Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
The purpose of this class is to retain lists (of files). This class provides services to add files
to an existing list and retrieve files from an existing list.

Attributes:

myListClass - This attribute identifies whether the list is an input list received from the
Request Processing CSC or is a list containing files to be inserted into the Data Server
Subsystem.
Data Type: char
Privilege: Private
Default Value:

Operations:

AddToList - This service provides the ability to add a file to an existing list.
Arguments:

GetNext - This service provides the ability to retrieve the next file in the list.
Arguments:
Return Type: char* filename

4-13 305-CD-009-001

Privilege: Public

InDataPreprocessList - This is the constructor service.
Arguments:

Associations:

The InDataPreprocessList class has associations with the following classes:
Class: InDataType adds_to - The InDataType class adds to the InDataPreprocessList class
new files which have been created as a result of preprocessing.
Class: InDataPreprocessTask populates - The InDataPreprocessTask class populates the
InDataPreprocessList to provide an initial list of file types to be inserted into the Data
Server Subsystem.
Class: InDataServerInsertionTask references - The InDataServerInsertionTask references
the InDataPreprocessList class to identify the preprocessed files which need to be inserted
into the Data Server Subsystem.
Class: InRequest submits - The InRequest class submits InDataPreprocessList in order to
identify the files which need to be preprocessed.

4.3.7 InDataPreprocessTask Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
The main purpose of this class is to initiate and monitor required data preprocessing before
insertion into the data server subsystem. The InRequest Class instantiates this class for each
separate preprocessing task. The InRequest class will supply an object ID for the input file
list (which contains the files associated with the preprocessing task). The
InDataPreprocessTask Class instantiates the InDataType Class. This class is responsible
for the control and reporting of its assigned preprocessing as directed by the InRequest
Class. It is also responsible for reporting the state of a particular preprocessing task
whenever the state changes. This object class also provides services to cancel, suspend, and
resume preprocessing tasks.

Attributes:

4-14 305-CD-009-001

myDataType - The attribute specifies the data type (e.g. metadata, science) for the Data
Preprocess Task object.
Data Type: char*
Privilege: Private
Default Value:

myInputList - This attribute references the input list which contains the files to be
preprocessed for the data preprocess task object.
Data Type: char*
Privilege: Private
Default Value:

Operations:

Cancel - This service provides the ability to terminate associated preprocessing.
Arguments:
Return Type: char* status
Privilege: Public

CleanUp - This service will remove all files associated with checkpoint working storage.
Arguments:
Return Type: Void
Privilege: Public

InDataPreprocessTask
Arguments:

Preprocess
Arguments:

Resume - This service reactivates the data preprocessing that has previously suspended.
This service is not available in Release A.
Arguments:
Return Type: char* status
Privilege: Public

Suspend - This service provides the ability to suspend associated preprocessing. This
service is not available at Release A.
Arguments:
Return Type: char* status
Privilege: Public

4-15 305-CD-009-001

Associations:

The InDataPreprocessTask class has associations with the following classes:
Class: InRequest InitiatePreprocessingVia - The InRequest class initiatePreprocessingvia
the InDataPreprocessTask class to start preprocessing on a specific data type and
associated files.
Class: InDataType creates - The InDataPreprocessTask class creates an instance of the
InDataType class for each data type granule which requires preprocessing.
Class: InDataPreprocessList populates - The InDataPreprocessTask class populates the
InDataPreprocessList to provide an initial list of file types to be inserted into the Data
Server Subsystem.

4.3.8 InDataServerInsertionTask Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Responsibles for the sending of request to the appropriate Data Server based on the data
type identifier. The object class has knowledge of the interface protocol with the Data
Server and interfaces with the Advertising Service of the Interoperability Subsystem to
determine the appropriate Data Server.

Attributes:

myDataTypeId - Data type specification that is used for determining the appropriate Data
Server to which the request is sent.
Data Type: char*
Privilege: Private
Default Value:

myInsertionList - List of data files to be inserted into the Data Server.
Data Type: char*
Privilege: Private
Default Value:

Operations:

4-16 305-CD-009-001

InDataServerInsertionTask
Arguments:

SendCancel - Sends insert cancellation request to the Data Server. This service interfaces
with the Advertising Service CSCI of the Interoperability Subsystem to determine the
appropriate Data Server.
Arguments:
Return Type: char* status
Privilege: Public

SendInsert - Sends insert request to the Data Server. The service interfaces with the
Advertising Service CSCI of the Interoperability Subsystem to determine the appropriate
Data Server.
Arguments:
Return Type: char* status
Privilege: Public

SendResume - Sends insert resumption request to the Data Server. The service interfaces
with the Advertising Service of the Interoperability Subsystem to determine the appropriate
Data Server. This service is not available at Release A.
Arguments:
Return Type: char* status
Privilege: Public

SendSuspend - Sends insert suspension request to the Data Server. The service interfaces
with the Advertising Service CSCI of the Interoperability Subsystem to determine the
appropriate Data Server. This service is not available in Release A.
Arguments:
Return Type: char* status
Privilege: Public

Associations:

The InDataServerInsertionTask class has associations with the following classes:
Class: InRequest SendsInsertRequestVia - The InRequest class SendsInsertRequestVia the
InDataServerInsertionTask class to initiate the process necessary to insert data into the
Data Server Subsystem.
Class: InDataPreprocessList references - The InDataServerInsertionTask references the
InDataPreprocessList class to identify the preprocessed files which need to be inserted into
the Data Server Subsystem.

4-17 305-CD-009-001

4.3.9 InDataServerInsertionTask Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Responsibles for the sending of request to the appropriate Data Server based on the data
type identifier. The object class has knowledge of the interface protocol with the Data
Server and interfaces with the Advertising Service of the Interoperability Subsystem to
determine the appropriate Data Server.

Attributes:

myDataTypeId - Data type specification that is used for determining the appropriate Data
Server to which the request is sent.
Data Type: char*
Privilege: Private
Default Value:

Operations:

SendCancel - Sends insert cancellation request to the Data Server. This service interfaces with
the Advertising Service CSCI of the Interoperability Subsystem to determine the
appropriate Data Server.
Arguments:
Return Type: char* status
Privilege: Public

SendInsert - Sends insert request to the Data Server. The service interfaces with the
Advertising Service CSCI of the Interoperability Subsystem to determine the appropriate
Data Server.
Arguments:
Return Type: char* status
Privilege: Public

SendResume - Sends insert resumption request to the Data Server. The service interfaces
with the Advertising Service of the Interoperability Subsystem to determine the appropriate
Data Server. This service is not available at Release A.
Arguments:
Return Type: char* status
Privilege: Public

4-18 305-CD-009-001

SendSuspend - Sends insert suspension request to the Data Server. The service interfaces
with the Advertising Service CSCI of the Interoperability Subsystem to determine the
appropriate Data Server. This service is not available in Release A.
Arguments:
Return Type: char* status
Privilege: Public

Associations:

The InDataServerInsertionTask class has associations with the following classes:
Class: InRequest SendsInsertRequestVia - The InRequest class SendsInsertRequestVia the
InDataServerInsertionTask class to initiate the process necessary to insert data into the
Data Server Subsystem.

4.3.10 InDataTransferTask Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
It is responsible for coordinating the data transfer and the population of the
InTransferredData object class. In addition, the object class is responsible for attempting
the data transfer retries when data transmission failed.

Attributes:

myTotalDataVolume - The total data volume of ingest files transmitted.
Data Type: int
Privilege: Private
Default Value:

myTotalRetryCounter - The total number of data transfer retry attempts performed.
Data Type: int
Privilege: Private
Default Value:

4-19 305-CD-009-001

Operations:

CancelTransfer - Cancels data transfer processing.
Arguments: void
Return Type: int
Privilege: Public

GetDTInfo - Requests for the data type grouping information for the associated ingest
files.
Arguments: char *DataTypeID
Return Type: int
Privilege: Public

ResumeTransfer - Resumes the data transfer processing which has previously put to hold.
Arguments: void
Return Type: int
Privilege: Public

SuspendTransfer - Suspends the data transfer processing.
Arguments: void
Return Type: int
Privilege: Public

TransferDataByBulk
Arguments:

TransferDataByFile
Arguments:

Associations:

The InDataTransferTask class has associations with the following classes:
Class: InResourceIF AllocatesResourceFrom,TransfersFilesFrom - The
InDataTransferTask object performs device allocation and bulk data transfer via the
InResourceIF object.
Class: InRequest InitiatesDataTransferVia - The InRequest object interfaces with the
InDataTransferTask object to perform data transfer.
Class: InTransferredData Populates - The InDataTransfer object gets information on the
data types and the files from the InTransferredData object.

4-20 305-CD-009-001

4.3.11 InDataType Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class provides services to manage the processing of files associated with a specific
data type/preprocessing task. This class will contain functionality necessary to preprocess
any data type. The functionality executed is driven by the InDataTypeTemplate and
InFileTypeTemplate classes.

Attributes:

myDataType - This attribute specifies the data type (e.g. CER00, LIS00) for the data type
object.
Data Type: char*
Privilege: Private
Default Value:

myFileTypeArray - This attribute identifies the array that stores the list of file types
associated with a specific data type.
Data Type: char* FileType
Privilege: Private
Default Value:

myInputList - This attribute references the input list which contains the files to be
preprocessed by the data type object.
Data Type: char*
Privilege: Private
Default Value:

myTaskNumber - This attribute specifies the task number of the data type object
Data Type: int
Privilege: Private
Default Value:

myTimeInitiated - This attribute indicates the time that data type object was created.
Data Type: float
Privilege: Private
Default Value:

Operations:

4-21 305-CD-009-001

InDataType - This is the constructor service.
Arguments:

Preprocess - This service provides the ability to preprocess any data type granule. This
includes controlling preprocessing of the granule, utilizing the metadata tool, and accessing
target and source metadata configuration files.
Arguments:
Return Type: char* Status, char* InsertionList
Privilege: Public

Associations:

The InDataType class has associations with the following classes:
Class: InDataPreprocessList adds_to - The InDataType class adds to the
InDataPreprocessList class new files which have been created as a result of preprocessing.
Class: InDataPreprocessTask creates - The InDataPreprocessTask class creates an instance
of the InDataType class for each data type granule which requires preprocessing.
Class: InDataTypeTemplate guides - The InDataTypeTemplate class guides the
InDataType class by providing it with the associated file types for a specific data type.
Class: InFileTypeTemplate guides - The InFileTemplate class guides the InDataType class
by providing information characterizing specific file types.
Class: InFile processes - The InDataType class processes the InFile class to attain
preprocessed science, ancillary, and metadata files.

4.3.12 InDataTypeTemplate Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This class contains information that categorizes each ingest data type. The services
provided enable the InDataType Class to determine what the required file types are for a
given data type. The class will enable the addition of new ingest data types.

Attributes:

myDataType - This attribute specifies the data type (e.g. CER00, LIS00) for a data type
template object.
Data Type: char*

4-22 305-CD-009-001

Privilege: Private
Default Value:

myFileTypeArray -
Data Type: char * FileType
Privilege: Private
Default Value:

Operations:

GetDTInfo - This service provides data type specific information to be able to discern whether
the appropriate files are present to do further preprocessing.
Arguments:
Return Type: Void
Privilege: Public

InDataTypeTemplate - This is the constructor service
Arguments:
Return Type: Void
Privilege: Public

Associations:

The InDataTypeTemplate class has associations with the following classes:
Class: InDataType guides - The InDataTypeTemplate class guides the InDataType class by
providing it with the associated file types for a specific data type.
Class: InTemplateEditor maintains - The InTemplateEditor class maintains the
InDataTypeTemplate class by providing the ability to add new instances of the
InDataTypeTemplate class.

4.3.13 InExternalDataProviderThreshold Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:

4-23 305-CD-009-001

Persistent thresholds on an External Data Provider basis for limits on Ingest request traffic,
data volumes, and data transfer retries.

Attributes:

myExternalDataProvider - Identifier of the external data provider (e.g., TSDIS) that supplies
ingest requests.
Data Type: char*
Privilege: Private
Default Value:

myIngestPriority - Priority associated with ingest requests from the external data
provider.
Data Type: int
Privilege: Private
Default Value:

myMaximumRequests - Maximum number of requests allowed to be procssed at one time
by the external data provider.
Data Type: int
Privilege: Private
Default Value:

myRetryThreshold - Number of retries to perform when a communication failure is
encountered with the external data provider.
Data Type: int
Privilege: Private
Default Value:

myVolumeThreshold - Maximum volume of data allowd across all ongoing ingest request
submitted by an external data provider.
Data Type: int
Privilege: Private
Default Value:

Operations:

GetExternalDataProvider - Get the name of the external data provider
Arguments: void
Return Type: char*
Privilege: Public

GetIngestPriority - Get the ingest priority for an external data provider.

4-24 305-CD-009-001

Arguments: void
Return Type: int
Privilege: Public

GetMaximumRequests - Get the maximum number of requests threshold for an external
data provider.
Arguments: void
Return Type: int
Privilege: Public

GetRetryThreshold - Get the communication retries threshold for an external data
provider.
Arguments: void
Return Type: int
Privilege: Public

GetVolumeThreshold - Get the data volume threshold for an external data provider.
Arguments: void
Return Type: int
Privilege: Public

SetExternalDataProvider - Set the name of the new data provider.
Arguments: char *NewDataProvider
Return Type: void
Privilege: Public

SetIngestPriority - Set the new ingest priority for an external data provider.
Arguments: int NewPriority
Return Type: void
Privilege: Public

SetMaximumRequests - Set the maxmimum ingest requests threshold for an external data
provider.
Arguments: int NewMaxRequestsThreshold
Return Type: void
Privilege: Public

SetRetryThreshold - Set the communications retries threshold for an external data
provider.
Arguments: int NewMaxRetriesThreshold
Return Type: void
Privilege: Public

SetVolumeThreshold - Set the data volume threshold for an external data provider.
Arguments: int NewVolume

4-25 305-CD-009-001

Return Type: void
Privilege: Public

Associations:

The InExternalDataProviderThreshold class has associations with the following classes:
InThreshold (Aggregation)

4.3.14 InFDFData Class

Parent Class: InScienceData
Public: No
Distributed Object: No
Purpose and Description:
This class provides services to preprocess FDF data into acceptable data server format.

Attributes:

All Attributes inherited from parent class

Operations:

InFDFData - This is the constructor service.
Arguments:

Preproces - This operation will reformat/convert FDF data into acceptable Data Server
format.
Arguments:
Return Type: char* status
Privilege: Public

Associations:

The InFDFData class has associations with the following classes:
None

4-26 305-CD-009-001

4.3.15 InFile Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Instantiates an ingested file on available storage space by collaborating with the
DsStResource object class services (described in the Data Server Subsystem section of this
document). The InFile object class also performs the file size and file existence checks.

Attributes:

myFileId - The unique identifier of the ingest file.
Data Type: char *
Privilege: Private
Default Value:

myFileLocation - Identifies the location the file resides.
Data Type: char *
Privilege: Private
Default Value:

myFileType - Identifies the file type(e.g., metadata file, science data, calibration) of the
ingest file.
Data Type: char *
Privilege: Private
Default Value:

myFileVolume - The data volume of the ingest file.
Data Type: int
Privilege: Private
Default Value:

Operations:

Check - Verifies the existence and size correctness of an ingest file.
Arguments:
Return Type: Void
Privilege: Public

Convert - Converts the ingest file to the ECS internal format.

4-27 305-CD-009-001

Arguments:
Return Type: Void
Privilege: Public

Create - Creates and opens a new file.
Arguments:
Return Type: Void
Privilege: Public

Extract - Extracts data information from the ingest file.
Arguments:
Return Type: Void
Privilege: Public

GetFileId - Returns the file name of the ingest file.
Arguments:
Return Type: Void
Privilege: Public

GetFileLocation
Arguments:
Return Type: Void
Privilege: Public

GetFileType - Returns the file type (e.g., metadata file, science data, calibration data) of
the ingest file.
Arguments:
Return Type: Void
Privilege: Public

GetFileVolume - Returns the size of the ingest file.
Arguments:
Return Type: Void
Privilege: Public

Read - Reads a record from the ingest file.
Arguments:
Return Type: Void
Privilege: Public

Reformat - Reformats the ingest file to the specified format.
Arguments:
Return Type: Void
Privilege: Public

4-28 305-CD-009-001

Transfer - Initiates transfer of the ingest file.
Arguments:
Return Type: Void
Privilege: Public

Write
Arguments:
Return Type: Void
Privilege: Public

Associations:

The InFile class has associations with the following classes:
Class: InMetadataTool manipulates - The InMetadata class manipulates the InFile class by
reading/writing files.
Class: InDataType processes - The InDataType class processes the InFile class to attain
preprocessed science, ancillary, and metadata files.
InDataPreprocessList (Aggregation)

4.3.16 InFileTypeTemplate Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This class is responsible for storing information that categorizes each ingest file type (e.g.
metadata vs science data). This information is used by the InDataType Class to create the
appropriate specializations of the InMetadata and InScienceData base classes. The class
will contain the necessary information on how to process each specific file type.

Attributes:

myArchivalFlag - Indicates whether the file type needs to be permanently archived
Data Type: char
Privilege: Private
Default Value:

myDataType - This attribute specifies the data type (e.g. CER00, LIS00) for the file type
template object.

4-29 305-CD-009-001

Data Type: char*
Privilege: Private
Default Value:

myFileClass - Defines the file type further by indicating whether the file contains
metadata, science data, or both.
Data Type: char
Privilege: Private
Default Value:

myFileType - This attribute specifies the file type (e.g. metadata, science) of the file type
template object.
Data Type: char*
Privilege: Private
Default Value:

myMaxNum - This attributes indicates the maximum acceptable number of files for the
file type object.
Data Type: int
Privilege: Private
Default Value:

myMetadataSpecialization - Specifies the correct InMetadata specialization for the
specific data type
Data Type: char*
Privilege: Private
Default Value:

myMetadataTargetName - Indicates the nomenclature of the target PVL metadata file to
be inserted into the data server subsystem.
Data Type: char*
Privilege: Private
Default Value:

myMinNum - This attribute indicates the minimum number of files required to be
associated with the file type template object.
Data Type: int
Privilege: Private
Default Value:

myRequiredFlag - This attribute indicates whether the data associated with this file type
template object is required.
Data Type: char
Privilege: Private
Default Value:

4-30 305-CD-009-001

myScienceSpecialization - Specifies the correct InScienceData specialization for the
specific file type
Data Type: char*
Privilege: Private
Default Value:

myScienceTargetName - Indicates the nomenclature of the preprocessed science data file
Data Type: char*
Privilege: Private
Default Value:

mySourceMCF - Specifies the correct InSourceMCF object for the each file type
Data Type: char*
Privilege: Private
Default Value:

Operations:

GetFTInfo - This service provides information to be able to properly instantiate the correct
specialization of the base preprocessing classes (e.g., InMetadata, InScienceData) and the
needed arguments to instantiate these specializations correctly for a given file type.
Arguments:

InFileTypeTemplate - This is the constructor service
Arguments:

Associations:

The InFileTypeTemplate class has associations with the following classes:
Class: InDataType guides - The InFileTemplate class guides the InDataType class by
providing information characterizing specific file types.
Class: InTemplateEditor maintains - The InTemplateEditor Class maintains the
InFileTemplate class by creating new instances of the InFileTemplate class.

4-31 305-CD-009-001

4.3.17 InGRIBData Class

Parent Class: InScienceData
Public: No
Distributed Object: No
Purpose and Description:
This class will provide services to preprocess science data in GRIB format.

Attributes:

All Attributes inherited from parent class

Operations:

InGRIBData - This is the constructor service.
Arguments:

Preprocess - This operation converts data in GRIB format to HDF format.
Arguments:
Return Type: char* Status
Privilege: Public

Associations:

The InGRIBData class has associations with the following classes:
None

4.3.18 InGUISession Class

Parent Class: InSession
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Responsibles for reading in the operations staff/user service request interactively via the
GUI screen and invokes the appropriate service to process the request. The object class is
a derived object class from the InSession object class. It inherits all the data and services
provided by the InSession object class.

4-32 305-CD-009-001

Attributes:

All Attributes inherited from parent class

Operations:

CheckPrivilege - Verifies that the user has privilege to do the requesting service.
Arguments: char *UserID
Return Type: int
Privilege: Public

ReceiveMsg - Reads service request entered interactively by the requestor via the GUI
interface.
Arguments: void
Return Type: int
Privilege: Public

SendMsg - Builds and sends request response to the requestor via the GUI interface.
Arguments: void
Return Type: int
Privilege: Public

Associations:

The InGUISession class has associations with the following classes:
None

4.3.19 InHDFMetadata Class

Parent Class: InMetadata
Public: No
Distributed Object: No
Purpose and Description:
This class will provide services to preprocess HDF metadata.

Attributes:

All Attributes inherited from parent class

4-33 305-CD-009-001

Operations:

InHDFMetadata - This is the constructor service.
Arguments:

Preprocess - This operation will extract values from input files in the HDF format. This
includes interfacing with the appropriate EOS-HDF classes, accessing the correct MCFs,
and interacting with the InMetadataTool class to produce a metadata file which is
acceptable to the Data Server Subsystem.
Arguments:
Return Type: char* Status
Privilege: Public

Associations:

The InHDFMetadata class has associations with the following classes:
None

4.3.20 InHistoryLog Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Contains ingest history information. The object class provides services to record ingest
events onto the log and to retrieve ingest events from the log.

Attributes:

myEntryCounter - Indicates the number of entries in the specified log.
Data Type: int
Privilege: Private
Default Value:

myEventEntry - Describes the event
Data Type: struct *EventEntry
Privilege: Private
Default Value:

4-34 305-CD-009-001

myLogName - The name of the ingest history log.
Data Type: char *
Privilege: Private
Default Value:

Operations:

GetEvent - Retrieves ingest activity event(s) from the Ingest History Log based on the
specified criteria.
Arguments: char *LogName, struct *EventEntry
Return Type: Void
Privilege: Public

WriteEvent - Records an ingest activity event into the Ingest History Log with time stamp.
Arguments: char *LogName, struct *EventEntry
Return Type: Void
Privilege: Public

Associations:

The InHistoryLog class has associations with the following classes:
Class: InLogMonitor Accesses - The InLogMonitor object interfaces with the
InHistoryLog object to get the ingest history information.

4.3.21 InLogMonitor Class

Parent Class: InGUISession
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Provides operations peronnel the capability to monitor the Ingest History Log (an alias for
Data Receipt Log) via the GUI interface. It allows operations personnel to specify the
search criteria for log entries for viewing based on 1) ingest start/stop date and time, 2) data
provider ID, 3) data set name, and 4) final request status. The object class is derived from
the InGUISession object class. It inherits all the data and service members provided by the
InGUISession.

4-35 305-CD-009-001

Attributes:

myLogCriteria - The criteria information provided by operation personnel that is to be used
for the Ingest History Log information searching.
Data Type: struct *
Privilege: Private
Default Value:

myLogName - The name of the log specified by operations personnel for monitoring.
Data Type: char *
Privilege: Private
Default Value:

Operations:

ProcessRequest - Invokes appropriate services to get and display the ingest history
information based on the given criteria.
Arguments: struct * LogCriteria, char *LogName
Return Type: int
Privilege: Public

Associations:

The InLogMonitor class has associations with the following classes:
Class: InHistoryLog Accesses - The InLogMonitor object interfaces with the InHistoryLog
object to get the ingest history information.

4.3.22 InLongDAA Class

Parent Class: InMessage
Public: No
Distributed Object: No
Purpose and Description:
This object class populates the long DAA (DAN Acknowledgement) data message to be
sent to the external Client after the receipt of the DAN.

Attributes:

4-36 305-CD-009-001

myLongDAA - This is the DAN Acknowledgement data message in detailed format.
Data Type: LongDAAmsg
Privilege: Private
Default Value:

Operations:

FillDAA - This function will package a long DAA message for the DAN acknowledgement.
Arguments: int Status[],char *DataType[],char *Descriptor, int FileGroupCount, int
DANSeqNo
Return Type: Void
Privilege: Public

Associations:

The InLongDAA class has associations with the following classes:
None

4.3.23 InLongDDN Class

Parent Class: InMessage
Public: No
Distributed Object: No
Purpose and Description:
This object class populates the long DDN (Data Delivery Notice) data message to be sent
to the external Client after the data is archived.

Attributes:

myLongDDN - This is the long DDN (Data Delivery Notice) data message.
Data Type: LongDDNmsg
Privilege: Private
Default Value:

Operations:

4-37 305-CD-009-001

FillDDN - Packages the DDN data message with given inputs.
Arguments: int Status[], char *Direcotry, char *FileId, int FileCount, int DANSeqNo
Return Type: Void
Privilege: Public

Associations:

The InLongDDN class has associations with the following classes:
None

4.3.24 InMediaIngest Class

Parent Class: InGUISession
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Provides operations personnel the capability to perform physical media ingest via the GUI
interface. The is a derived object class from the InGUISession object class. It inherits all
data and service members provided by the InGUISession.

Attributes:

All Attributes inherited from parent class

Operations:

CheckPrivilege - Verifies that the operator and the media provider has ingest privilege.
Arguments: char *UserName
Return Type: int
Privilege: Public

Associations:

The InMediaIngest class has associations with the following classes:
None

4-38 305-CD-009-001

4.3.25 InMessage Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
Contains data messages that interchanges between the external Client and ECS/Ingest.

Attributes:

None

Operations:

GetMsgLength - Extracts and returns the message type from the data message.
Arguments: char *MsgPtr
Return Type: Void
Privilege: Public

InMessage - This is the constructor for the InMessage object class.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The InMessage class has associations with the following classes:
Class: InSession Receives/Sends - The InSession object interfaces with the InMessage
object to access data messages that are interchanged between Ingest and the external Client.

4.3.26 InMetadata Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This is an abstract class.

4-39 305-CD-009-001

Attributes:

myInFile - This attribute defines the associated input files.
Data Type: char*
Privilege: Private
Default Value:

myInSourceMCF - This attribute specifies the associated source metadata configuration
file.
Data Type: char*
Privilege: Private
Default Value:

Operations:

Preprocess - This is an abstract operation.
Arguments:

Associations:

The InMetadata class has associations with the following classes:
Class: InSourceMCF defines - The InSourceMCF class defines the InMetadata class by
providing format informatin on input metadata files.
Class: DsCIDescriptor guides - The DsCIDescriptor class guides the InMetadata class by
providing services to access target MCFs and validate metadata files.
Class: InMetadataTool utilizes - The InMetadata class utilizes the InMetadataTool to read
targetMCFsand write PVL metadata.
InDataType (Aggregation)

4.3.27 InMetadataTool Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
This class provides services to read the parameters in a target metadata configuration file,
set the values of these parameters, and the write the modified target MCF to a final PVL
file.

4-40 305-CD-009-001

Attributes:

mypthread - This attribute defines the thread the metadata tool object is associated with.
Data Type: int
Privilege: Private
Default Value:

Operations:

PGS_MET_GetNext - Provides the next parameter name within the targetMF.
Arguments:
Return Type: char* parameter
Privilege: Public

PGS_MET_INIT - Initializes a metadata configuration file. The contents of the metadata
configuration file are read into memory to provide a basis for setting and checking metadata
parameter values.
Arguments:

PGS_MET_Set - The value of any of the parameters from the target MCF can be set using
this operation.
Arguments:

PGS_MET_WriteFile - Once the parameter values have been set in the Target MCF, this
operation writes the contents of the MCF memory section out to a physical file.
Arguments:

Associations:

The InMetadataTool class has associations with the following classes:
Class: InFile manipulates - The InMetadata class manipulates the InFile class by reading/
writing files.
Class: InMetadata utilizes - The InMetadata class utilizes the InMetadataTool to read
targetMCFsand write PVL metadata.

4-41 305-CD-009-001

4.3.28 InNetworkIngest Class

Parent Class: InGUISession
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Provides authorized science users the capability to ingest data electronically via the GUI
interface. The object class is derived from the InGUISession object class. It inherits all the
data and service members provided by the InGUISession object class.

Attributes:

All Attributes inherited from parent class

Operations:

SaveRequestToFile - Saves the network ingest request contents on the screen onto a user
specified file name.
Arguments: char *FileName
Return Type: Void
Privilege: Public

Associations:

The InNetworkIngest class has associations with the following classes:
None

4.3.29 InPVMetadata Class

Parent Class: InMetadata
Public: No
Distributed Object: No
Purpose and Description:
This class will provides services to preprocess Parameter-Value metadata.

Attributes:

4-42 305-CD-009-001

myLineDelimiter - This attribute will define the symbol used to indicate the end of a
parameter-value metadata statement.
Data Type: char*
Privilege: Private
Default Value:

myParameterDelimiter - This attribute will define the symbol used to delimit the
parameter portion of a parameter-value metadata statement.
Data Type: char*
Privilege: Private
Default Value:

mySeparator - This attribute will define the symbol used to separate the parameter from
the value in the parameter-value metadata statement
Data Type: char*
Privilege: Private
Default Value:

myValueDelimiter - This attribute will define the symbol used to delimit the value part of
a parameter-value metadata statement.
Data Type: char*
Privilege: Private
Default Value:

Operations:

InPVMetadata - This is the constructor service.
Arguments:

Preprocess - This operation will extract values from input parameter-value files based on
delimiters and parameter names. It will access the correct MCFs and interact with the
InMetadata_Tool Class to produce a metadata file which is acceptable to the data server
subsystem.
Arguments:
Return Type: char* status
Privilege: Public

Associations:

4-43 305-CD-009-001

The InPVMetadata class has associations with the following classes:
None

4.3.30 InPollingIngestSession Class

Parent Class: InSession
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This object class does not have any control link with the external interface (i.e, no physical
stimulus provided from external source). It is a persistent object class which is configured
to wake up at a tunable period of time to detect existence of ingest files at a designated
location; the location could either be external or local in ECS. If files are detected, the
object class will instantiate the InPollingIngestRequest object class and add it to the
InRequestList to be processed. The InPollingIngestSession object class is derived from the
InSession. It inherits all the data and service members provided by the InSession object
class.

Attributes:

myPollingTimer - The time period which indicates how often the Polling Ingest Session
should check for the existence of ingest files for ingest processing.
Data Type: int
Privilege: Private
Default Value:

Operations:

CleanupDirectory - Peforms directory cleanup after files are ingested by means of moving the
complete files to another directory so that these files will not be picked up again for the next
ingesting.
Arguments: void
Return Type: int
Privilege: Public

DeliverResponse - Generates the ingest response pertaining to the ingest polling process
in a file.
Arguments: char *ResponseFile
Return Type: Void

4-44 305-CD-009-001

Privilege: Public

ProcessRequest
Arguments: char * FileInfo
Return Type: int
Privilege: Public

Associations:

The InPollingIngestSession class has associations with the following classes:
None

4.3.31 InPollingThreshold Class

Parent Class: InExternalDataProviderThreshold
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This is a persistant object class that defines thresholds for the Ingest Polling Interface.

Attributes:

myPollingTimer - Indicates the time period to wait before starting the Ingest Polling.
Data Type: int
Privilege: Private
Default Value:

Operations:

GetTimer - Get the polling timer for the associated external client.
Arguments: void
Return Type: int
Privilege: Public

SetTimer - Sets the polling timer for the associated external client.
Arguments: int
Return Type: int

4-45 305-CD-009-001

Privilege: Public

Associations:

The InPollingThreshold class has associations with the following classes:
None

4.3.32 InReformatData Class

Parent Class: InScienceData
Public: No
Distributed Object: No
Purpose and Description:
This class provides services to preprocess data which is not in an ECS compatible format.

Attributes:

All Attributes inherited from parent class

Operations:

InReformatData - This is the constructor service.
Arguments:

Preprocess - This operation will reformat input science data files which are not in an
acceptable ECS data format. The reformatting includes byte swapping and other functions
to resolve platform incompatibilities.
Arguments:
Return Type: char* Status
Privilege: Public

Associations:

The InReformatData class has associations with the following classes:
None

4-46 305-CD-009-001

4.3.33 InRequest Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Contains information provided by a requestor/external interface requesting ingest of data.
The object class has the responsibility to perform basic request component checking and to
assign a unique identifier for the new ingest request.

Attributes:

myAggregateLength - Total volume of data (in bytes) to be ingested based on the given
request.
Data Type: int
Privilege: Private
Default Value:

myDataTypeIdList - The set of data types associate with the ingest files.
Data Type: struct **
Privilege: Private
Default Value:

myExpirationDateTime - Date/time by which the corresponding ingest request must be
completed (i.e., archive insertion complete and response returned to the external data
provider).
Data Type: char*
Privilege: Private
Default Value:

myExternalDataProvider - Identifier of the external data source providing data to be
ingested into ECS.
Data Type: char*
Privilege: Private
Default Value:

myIngestType - The type of data ingest to be performed (e.g., media ingest, network
ingest).
Data Type: char*
Privilege: Private
Default Value:

myProcessingEndDateTime - Ending date/time (in standard ECS date/time format) at

4-47 305-CD-009-001

which the ingest request processing completed (the time immediately prior to deleting the
object in the destructor service).
Data Type: DateTime
Privilege: Private
Default Value:

myProcessingStartDateTime - Starting date/time (in standard ECS time format) at which
ingest processing began (time of creation of the InRequest object).
Data Type: DateTime
Privilege: Private
Default Value:

myRequestId - The information that uniquely identifies an Ingest Request. Request
Identifiers are referenced by Status Requests and other Service Requests that are used to
monitor or control the execution of Ingest Requests.
Data Type: int
Privilege: Private
Default Value:

myRequestPriority - The information that determines the order in which an ingest request
will be processed relative to other ingest requests waiting to be processed. The priority is
provided by the InExternalDataProvider object class for each external data provider.
Data Type: int
Privilege: Private
Default Value:

myRequestState - State of the corresponding ingest request. Values are "Active" and
"Complete".
Data Type: char*
Privilege: Private
Default Value:

mySequenceId - The SequenceId identifies each of the control messages for a given
request. The sequence number is first extracted from the DAN, then all the control
messages (e.g, DAA,DRA,DRR...) need to contain the same sequence number for a given
request.
Data Type: int
Privilege: Private
Default Value:

mySessionId - The identifier of the session associated with the ingest request.
Data Type: int
Privilege: Private
Default Value:

4-48 305-CD-009-001

myTotalFileCount - Total number of files identified for ingest in the request.
Data Type: int
Privilege: Private
Default Value:

Operations:

Cancel - Cancels an ingest request.
Arguments: void
Return Type: int
Privilege: Public

ChangeState - Updates the state of an ingest request.
Arguments: String *NewState
Return Type: int
Privilege: Private

Check - Verifies the components in the Request.
Arguments: void
Return Type: int
Privilege: Public

GetRequestId - Assigns an unique identifier for the ingest request.
Arguments: void
Return Type: int
Privilege: Private

GetSessionId - Returns the identifier of the Session that the ingest request is running.
Arguments: void
Return Type: int
Privilege: Public

GetState - Returns the State that the Session is on.
Arguments: void
Return Type: char*
Privilege: Private

InRequest - Constructor, when a DAN file is supplied.
Arguments: char* DANfile
Return Type: int
Privilege: Public

InRequest - Constructor, when a DAN message is supplied.

4-49 305-CD-009-001

Arguments: DANmsg *DANmsgPtr
Return Type: int
Privilege: Public

ProcessRequest - Service to invoke ingest processing (data transfer, data preprocessing,
data insertion) for a given ingest request.
Arguments: void
Return Type: int
Privilege: Public

Associations:

The InRequest class has associations with the following classes:
Class: InSession Creates - An instance of InSession object could create one or more
instance of InRequest objects.
Class: InDataTransferTask InitiatesDataTransferVia - The InRequest object interfaces with
the InDataTransferTask object to perform data transfer.
Class: InRequestManager IsManagedBy - InRequestManager accesses InRequestList.
Class: InDataPreprocessTask IsPreprocessedBy - An instance of the InRequest object
interfaces with one or more instances of InDataPreprocessTask object for data
preprocessing.
Class: InDAN IsStoredIn - The InDAN object information is stored in InRequest.
Class: InDataServerInsertionTask SendsInsertRequestVia - The InRequest class
SendsInsertRequestVia the InDataServerInsertionTask class to initiate the process
necessary to insert data into the Data Server Subsystem.
Class: InRequestProcessData IsStoredIn - InRequestProcessData object checkpoints
InRequest.
Class: InRequestSummaryData IsStoredIn - InRequestSummaryData object checkpoints
InRequest.
Class: InRequestSummaryHeader IsStoredIn - InRequestSummaryHeader object
checkpoints InRequest.
Class: InRequestProcessHeader Stores - InRequestProcessHeader object checkpoints
InRequest.

4.3.34 InRequestController Class

Parent Class: InGUISession
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:

4-50 305-CD-009-001

Provides authorized operations personnel the capability to udpate an ongoing ingest request
via the GUI interface. The operations personnel could 1) cancel an ingest request, 2)
suspend an ingest request, 3) resume an ingest request, or 4) change priority of an ingest
request. This is a derived object class from the InGUISession object class. It inherits all
the data and services provided by the InGUISession object class.

Attributes:

myRequestCriteria - The criteria spcified by the Operator for rsearching the appropriate
requests which are to be updated.

myRequestId - The identifier of the ingest request that is to be updated (e.g., cancel,
suspend, resume, change priority).
Data Type: int
Privilege: Private
Default Value:

myRequestIdList - List of identifier of requests to be updated.

myUpdateType - Identifies the type of update to be performed on an ingest request. The
types of ingest request updates consist of: cancel, suspend, resume, and change priority.
Data Type: int
Privilege: Private
Default Value:

Operations:

ProcessRequest - Invokes appropriate services to perform the update service on the specified
ingest request. This service overloads the ProcessRequest() service defined the
InGUISession object class.
Arguments: int RequestId, int UpdateType
Return Type: Void
Privilege: Public

Associations:

The InRequestController class has associations with the following classes:
Class: InRequestList UpdatesRequestFrom - The InRequestController interfaces with the
InRequestList object to locate the InRequest object on which the update is to be performed

4-51 305-CD-009-001

(e.g., change priority, cancel, suspend, resume).

4.3.35 InRequestFileInfo Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Provides checkpoint storage of file information associated with a given data granule in a
given ingest request. In the event of request completion, this item is deleted.

Attributes:

myBeginningDateTime - The starting date/time of the file ingest.
Data Type: DateTime
Privilege: Private
Default Value:

myDirectoryID - The directory containing the Request files.
Data Type: char*
Privilege: Private
Default Value:

myFileID - The identifier of the file.
Data Type: char*
Privilege: Private
Default Value:

myFileSize - The size of ingest file.
Data Type: int
Privilege: Private
Default Value:

myRecordSize - Indicates the file record size.
Data Type: int
Privilege: Private
Default Value:

myRequestID - Identifier of the InRequest_S object to which this entry corresponds. This
is a primary key.
Data Type: char*

4-52 305-CD-009-001

Privilege: Private
Default Value:

Operations:

InRequestFileInfo - This is the object construct. It populates the object and the associated data
base table entry.
Arguments: void
Return Type: int
Privilege: Public

SearchTable - Locates a stored entry based on Request ID.
Arguments: char* myRequestID
Return Type: int
Privilege: Public

~InRequestFileInfo - This is the object destructor. It deletes the object and the associated
data base table entry.
Arguments: char* myRequestID
Return Type: int
Privilege: Public

Associations:

The InRequestFileInfo class has associations with the following classes:
InRequestProcessData (Aggregation)

4.3.36 InRequestInfo Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Keeps track of all the requests running per session. Each request information is inserted
upon receipt of DAN, and deleted from the list upon completion of request (receipt of
DAA).

4-53 305-CD-009-001

Attributes:

DANSeqNum - DAN Sequence number associated with the request.
Data Type: int
Privilege: Private
Default Value:

RequestId - The identifer of the request.
Data Type: int
Privilege: Private
Default Value:

Operations:

AddRequest - Inserts a new request information into the Request List of the InSession.
Arguments: int RequestId, int DANseqNum
Return Type: Void
Privilege: Public

DeleteRequest - Deletes request information from the Request List of the InSession.
Arguments: int DANSeqNum
Return Type: Void
Privilege: Public

GetRequestCount - Get the total number of requests in the Request List of the InSession.
Arguments: void
Return Type: Void
Privilege: Public

InRequestInfo - This is the constructor of the InRequestInfo object class.
Arguments: int SeqNum, int ReqId
Return Type: Void
Privilege: Public

ListRequests - Lists all the request in the Request List of the Session.
Arguments: void
Return Type: Void
Privilege: Public

SearchRequest - Searches for a request in the list with the DAN sequence number.
Arguments: int DANSeqNum
Return Type: Void

4-54 305-CD-009-001

Privilege: Public

Associations:

The InRequestInfo class has associations with the following classes:
Class: InSession Manages - The InSession object class manages the InRequestInfo object
class.

4.3.37 InRequestList Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Contains a list of all the ingest requests that are currently ongoing or waiting to be
processed in the order based on the priority. The object class has the responsibility 1) to
add ingest request to the list based on the priority, 2) to delete an ingest request, 3) to search
for an ingest request, and 4) to list the ingest requests.

Attributes:

myCurrentPointer - The current position in the Ingest Request List.
Data Type: int *CurPointer
Privilege: Private
Default Value:

myListCounter - The number of requests in the Ingest Request List.
Data Type: int Counter
Privilege: Private
Default Value:

myListHead - The first request in the Ingest Request List.
Data Type: int *StartPointer
Privilege: Private
Default Value:

myListTail - The last request in the Ingest Request List.
Data Type: int EndPointer
Privilege: Private

4-55 305-CD-009-001

Default Value:

Operations:

AddRequest - Adds a request entry to the list.
Arguments: struc*Request
Return Type: int
Privilege: Public

DeleteRequest - Deletes a request entry from the list.
Arguments: int RequestId
Return Type: int
Privilege: Public

GetNext - Get the next request entry from the list.
Arguments: int RequestId
Return Type: int
Privilege: Public

ListAll - Lists all request entries in the list.
Arguments: viod
Return Type: int
Privilege: Public

SearchRequest - Searches for a request entry on the list using Request ID.
Arguments: int RequestId
Return Type: int
Privilege: Public

Associations:

The InRequestList class has associations with the following classes:
Class: InStatusMonitor QueriesRequest(s)From - The InStatusMontiro object interfaces
with InRequestList to locate InReqeust(s) for status monitoring.
Class: InRequestController UpdatesRequestFrom - The InRequestController interfaces
with the InRequestList object to locate the InRequest object on which the update is to be
performed (e.g., change priority, cancel, suspend, resume).

4-56 305-CD-009-001

4.3.38 InRequestManager Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
This is a focal object class of the Ingest CI. It coordinates the ingest processing which
includes the initiating of the data transfer and the sending of data insertion request to the
appropriate Data Server. The object class also tracks and allows updates the ingest
thresholds.

Attributes:

myCurrentDataVolumeKeep - Current running total of data volume in active ingest request.
Incremented as new InRequest objects are created; decremented when InRequest objects
are deleted.
Data Type: int
Privilege: Private
Default Value:

myCurrentRequests - Keeps a running total of the number of requests currently in the
system. Incremented as new InRequest objects are created; decremented when InRequest
objects are deleted.
Data Type: int
Privilege: Private
Default Value:

Operations:

CancelRequest - Requests cancellation of an existing InRequest object. The InRequest
CancelRequest service is invoked. The success of the cancellation request depends on the
state of the ongoing request.
Arguments: DCEObjRefT* ObjReference
Return Type: int
Privilege: Public

CreateRequest - Creates a new InRequest object in a pthead when a DAN file pointer is
provided.
Arguments: char* DANfile
Return Type: DCEObjRefT*
Privilege: Public

4-57 305-CD-009-001

CreateRequest - Creates a new InRequest object in a pthread when a DAN message
pointer is provided.
Arguments: DANmsg* DANmsgPtr
Return Type: DCEObjRefT*
Privilege: Public

DeleteRequest - Deletes a currently instantiated InRequest object.
Arguments: DCEObjRefT* ObjReference
Return Type: int
Privilege: Public

GetCurrentDataVolume - Gets the value of the current data volume.
Arguments: void
Return Type: int
Privilege: Public

GetCurrentRequests - Gets the value of the current total number of ingest requests in the
system.
Arguments: void
Return Type: int
Privilege: Public

RestoreRequestList - Recovers the InRequestList object after a process or system failure.
Arguments: void
Return Type: int
Privilege: Private

UpdateCurrentDataVolume - Updates the value of the current running total of data
volume requested to be ingested.
Arguments: int UpdateValue
Return Type: int
Privilege: Private

UpdateCurrentRequests - Updates the current running total for number of ingest requests
in the system.
Arguments: int UpdateValue
Return Type: int
Privilege: Private

Associations:

4-58 305-CD-009-001

The InRequestManager class has associations with the following classes:
Class: InRequestList IsAccessedBy - InRequestManager accesses InRequestList.
Class: InRequest IsManagedBy - InRequestManager accesses InRequestList.
Class: InThreshold ProvidesThresholdsfor - InRequestManager retries system and external
data provider based thresholds for ingest processing.

4.3.39 InRequestManager_C Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
The client implementation of the distributed InRequestManager object. This client acts as
the intermediary to the object factory (InRequestManager_S).

Attributes:

None

Operations:

CreateRequest - Service to create an InRequest object via a distributed object factory
(InRequestManager_S) when a DAN message is supplied.
Arguments: DANmsg* DANmsgPtr
Return Type: int
Privilege: Public

CreateRequest - Service to create an InRequest object via a distributed object factory
(InRequestManager_S) when a DAN file is supplied.
Arguments: char* DANfile
Return Type: int
Privilege: Public

Associations:

The InRequestManager_C class has associations with the following classes:
InRequestManager (Aggregation)

4-59 305-CD-009-001

4.3.40 InRequestManager_S Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
Implementation of the server (object factory) for InRequestManager.

Attributes:

None

Operations:

CreateRequest - Service to create an InRequest_S object when a DAN message is supplied.
Arguments: DANmsg* DANmsgPtr
Return Type: int
Privilege: Public

CreateRequest - Service to create an InRequest_S object when a DAN file is supplied.
Arguments: char* DANfile
Return Type: int
Privilege: Public

Associations:

The InRequestManager_S class has associations with the following classes:
InRequestManager (Aggregation)

4.3.41 InRequestProcessData Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Provides checkpoint storage of data granule processing information associated with a given
ingest request. In the event of request completion, this item is deleted.

4-60 305-CD-009-001

Attributes:

myDataDescriptor - ASCII description of the data type.
Data Type: char*
Privilege: Private
Default Value:

myDataGranuleID - Numeric (ASCII) identifier of a data granule within an ingest
request. Determined incrementally for each data granule in an ingest request.
Data Type: char*
Privilege: Private
Default Value:

myDataGranuleState - State of processing ("Not transferred", "Transferred",
"Submitted", and "Inserted") of a data granule for a given ingest request.
Data Type: char*
Privilege: Private
Default Value:

myDataVersion - Version number of the data granule to be ingested (> 1 if a reprocessed
granule).
Data Type: char*
Privilege: Private
Default Value:

myRequestId - Identifier of the InRequest_S object to which this entry corresponds. This
is a primary key.
Data Type: char*
Privilege: Private
Default Value:

Operations:

InRequestProcessData - Constructor; populates the object and the associated data base table
entry.
Arguments: void
Return Type: int
Privilege: Public

SearchTable - Locates a stored entry based on Request ID.
Arguments: char* myRequestID
Return Type: int
Privilege: Public

4-61 305-CD-009-001

~InRequestProcessData - Destructor; deltes the object and the associated data base table
entry.
Arguments: char* myRequestID
Return Type: int
Privilege: Public

Associations:

The InRequestProcessData class has associations with the following classes:
Class: InRequest IsStoredIn - InRequestProcessData object checkpoints InRequest.

4.3.42 InRequestProcessHeader Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Provides checkpoint storage of ingest request processing information associated with a
given ingest request. In the event of request completion, this item is deleted.

Attributes:

myExpirationDateTime - Date/time by which the corresponding ingest request must be
completed (i.e., archive insertion complete and response returned to the external data
provider).
Data Type: DateTime
Privilege: Private
Default Value:

myRequestID - Identifier of the InRequest_S object to which this entry corresponds. This
is a primary key.
Data Type: char*
Privilege: Private
Default Value:

myRequestPriority - The information that determines the order in which an ingest request
will be processed relative to other ingest requests waiting to be processed. The priority is
provided by the InExternalDataProvider object class for each external data provider.

4-62 305-CD-009-001

Data Type: int
Privilege: Private
Default Value:

myRequestState - State of the corresponding ingest request. Values are "Active" and
"Complete".
Data Type: char*
Privilege: Private
Default Value:

mySequenceID - The SequenceId identifies each of the control messages for a given
request. The sequence number is first extracted from the DAN, then all the control
messages (e.g, DAA,DRA,DRR...) need to contain the same sequence number for a given
request.
Data Type: int
Privilege: Private
Default Value:

mySessionID - Identifier of the InSession object to which the InRequest object
corresponding to this entry is associated.
Data Type: char*
Privilege: Private
Default Value:

Operations:

InRequestProcessHeader - Constructor; populates the object and the associated data base
table entry.
Arguments: void
Return Type: int
Privilege: Public

SearchTable - Locates a stored entry based on Request ID.
Arguments: char* myRequestID
Return Type: int
Privilege: Public

~InRequestProcessHeader - Destructor; deletes the object and the associated data base
table entry.
Arguments: char* myRequestID
Return Type: int

4-63 305-CD-009-001

Privilege: Public

Associations:

The InRequestProcessHeader class has associations with the following classes:
Class: InRequest Stores - InRequestProcessHeader object checkpoints InRequest.

4.3.43 InRequestSummaryData Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Provides long-term storage of summary data type statistics associated with a given data
granule in a given ingest request.

Attributes:

myDataGranuleID - Numeric (ASCII) identifier of a data granule within an ingest request.
Determined incrementally for each data granule in an ingest request.
Data Type: char*
Privilege: Private
Default Value:

myDataGranuleVolume - Total data volume to be ingested for a data granule in an ingest
request. The total data volume for the data granule is determined by summing the data
volumes for the files comprising the data granule.
Data Type: int
Privilege: Private
Default Value:

myDataType - Data type identifier for the data granule. Selected from a list of valid data
type identifiers maintained by the Data Server.
Data Type: char*
Privilege: Private
Default Value:

myFinalStatus - Final error status for the ingest processing of a data granule.
Data Type: int

4-64 305-CD-009-001

Privilege: Private
Default Value:

myRequestID - Identifier of the InRequest_S object to which this entry corresponds. This
is a primary key.
Data Type: char*
Privilege: Private
Default Value:

Operations:

InRequestSummaryData - Constructor; populates the object and the associated data base
entry.
Arguments: void
Return Type: int
Privilege: Public

SearchTable - Locates a stored entry based on Request ID.
Arguments: char *myRequestID
Return Type: int
Privilege: Public

~InRequestSummaryData - Destructor; deletes the object and the associated data base
table entry.
Arguments: char* myRequestID
Return Type: int
Privilege: Public

Associations:

The InRequestSummaryData class has associations with the following classes:
Class: InRequest IsStoredIn - InRequestSummaryData object checkpoints InRequest.

4.3.44 InRequestSummaryHeader Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True

4-65 305-CD-009-001

Purpose and Description:
Provides long-term storage of summary request-level statistics associated with a given
ingest request.

Attributes:

myAggregateLength - Total volume of data (in bytes) to be ingested based on the given
request.
Data Type: int
Privilege: Private
Default Value:

myExternalDataProvider - Identifier of the external data provider (e.g., TSDIS)
associated with an ingest request.
Data Type: char*
Privilege: Private
Default Value:

myMission - Name of the science mission (e.g., Landsat 7) for which the data described in
the request was generated.
Data Type: char*
Privilege: Private
Default Value:

myProcessingEndDateTime - Ending date/time (in standard ECS date/time format) at
which the ingest request processing completed (the time immediately prior to deleting the
object in the destructor service).
Data Type: DateTime
Privilege: Private
Default Value:

myProcessingStartDateTime - Starting date/time (in standard ECS time format) at which
ingest processing began (time of creation of the InRequest object).
Data Type: DateTime
Privilege: Private
Default Value:

myRequestID - Identifier of the InRequest_S object to which this entry corresponds. This
is a primary key.
Data Type: char*
Privilege: Private
Default Value:

myTotalDataGranules - Total number of granules associated with an ingest request. This

4-66 305-CD-009-001

value is determined by counting the number of data granule entries in the ingest request.
Data Type: int
Privilege: Private
Default Value:

myTotalFileCount - Total number of files identified for ingest in the request.
Data Type: int
Privilege: Private
Default Value:

Operations:

InRequestSummaryHeader - Constructor; populates the object and the associated data base
table entry.
Arguments: void
Return Type: int
Privilege: Public

SearchTable - Locates a stored entry based on Request ID.
Arguments: char *myRequestID
Return Type: int
Privilege: Public

~InRequestSummaryHeader - Destructor; deletes the object and the associated data base
table entry.
Arguments: char* myRequestID
Return Type: int
Privilege: Public

Associations:

The InRequestSummaryHeader class has associations with the following classes:
Class: InRequest IsStoredIn - InRequestSummaryHeader object checkpoints InRequest.

4.3.45 InRequest_C Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes

4-67 305-CD-009-001

Purpose and Description:
This is the client implementation of the InRequest distributed object. Generated by IDL.

Attributes:

myRequestID - Identifier of the InRequest object to which this client object communicates.
Data Type: char *
Privilege: Private
Default Value:

Operations:

InRequest_C - The constructor, where a DAN message structure is entered.
Arguments: DANmsg* DANmsgPtr
Return Type: int
Privilege: Public

InRequest_C - The constructor, where a DAN file is specified.
Arguments: char* DANfile
Return Type: int
Privilege: Public

Associations:

The InRequest_C class has associations with the following classes:
InRequest (Aggregation)

4.3.46 InRequest_S Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
This is the server implementation of the InRequest distributed object. Generated from IDL.

Attributes:

4-68 305-CD-009-001

myRequestID - Identifier of the InRequest object to which this server object communicates.
Data Type: char *
Privilege: Private
Default Value:

Operations:

InRequest_S - Constructor, where a DAN message is supplied.
Arguments: DANmsg* DANmsgPtr
Return Type: int
Privilege: Public

InRequest_S - Constructor, where a DAN file is supplied.
Arguments: char* DANfile
Return Type: int
Privilege: Public

Associations:

The InRequest_S class has associations with the following classes:
InRequest (Aggregation)

4.3.47 InResourceIF Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Serves as an interface to resource/device services (e.g., device allocation, data transferring,
and file information) by which the Data Server Subsystem provides. The object class
interfaces with the Storage Resource Management and Data Distribution CSCIs of the Data
Server Subsystem. Refer to the Data Server Subsystem section of this document for details.

Attributes:

myResourceId - The identifier of the allocated resource.
Data Type: int
Privilege: Private

4-69 305-CD-009-001

Default Value:

myResourceType - The type of resource (e.g., working storage, physical media) to be used
for the Ingest processing.
Data Type: int
Privilege: Private
Default Value:

Operations:

AllocateResource - Allocates for an available Resource device.
Arguments: int ResourceId
Return Type: int
Privilege: Public

CopyFile - Copies a file from the specified resource to the specified directory.
Arguments: void
Return Type: int
Privilege: Public

DeallocateResource - Deallocates the resource device.
Arguments: int ResourceId
Return Type: int
Privilege: Public

GetFileInfo - Gets the file information on the resource.
Arguments: Char *FileId, char *FileLocation, int FileSize
Return Type: int
Privilege: Public

ListFiles - Lists all the files in the resource.
Arguments: void
Return Type: int
Privilege: Public

Associations:

The InResourceIF class has associations with the following classes:
Class: InDataTransferTask AllocatesResourceFrom,TransfersFilesFrom - The
InDataTransferTask object performs device allocation and bulk data transfer via the
InResourceIF object.
Class: InFile ResidesOn - The InFile object performs the file transfer and the file

4-70 305-CD-009-001

transmission check via the InResourceIF object.

4.3.48 InSDMetadata Class

Parent Class: InMetadata
Public: No
Distributed Object: No
Purpose and Description:
This class provides services to preprocess data which is in self-descriptive format other
than HDF.

Attributes:

All Attributes inherited from parent class

Operations:

InSDMetadata - This is the constructor service.
Arguments:

Preprocess - This operation will extract values from input files with a self-descriptive
format (other than HDF). It will access the correct MCFs and interact with InMetadataTool
Class to produce a metadata file which is acceptable to the Data Server Subsytem.
Arguments:
Return Type: char* status
Privilege: Public

Associations:

The InSDMetadata class has associations with the following classes:
None

4.3.49 InScienceData Class

Parent Class: Not Applicable
Public: No
Distributed Object: No

4-71 305-CD-009-001

Purpose and Description:
This is an abstact class

Attributes:

myInFile - This attribute defines the associated input file.
Data Type: char*
Privilege: Private
Default Value:

Operations:

Preprocess - This is an abstact operation.
Arguments:

Associations:

The InScienceData class has associations with the following classes:
InDataType (Aggregation)

4.3.50 InServer Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Persistent Class:
Purpose and Description:
Provides a single point of entry to the Ingest system for all ingest interfaces. The object
class manages ingest sessions.

Attributes:

mySessionCount - The total number of sessions running under the Ingest Server.
Data Type: int
Privilege: Private
Default Value:

4-72 305-CD-009-001

Operations:

StartServer - Starts up the Ingest Server.
Arguments: void
Return Type: int
Privilege: Public

Associations:

The InServer class has associations with the following classes:
Class: InSessionInfo IsManagedBy
Class: InSession Manages - All instance of InSession object is managed by one instance of
InServer object.

4.3.51 InServerExtRPC_C Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This is the client/proxy implementation that defines the RPC for initiating an Ingest
Session.

Attributes:

None

Operations:

CreateSession - This is a RPC that initiates a new Ingest Session.
Arguments: handle_t InServerBH, char *GatewayStringBH, error_status_t
*CreateSessStatus
Return Type: int
Privilege: Public

Associations:

4-73 305-CD-009-001

The InServerExtRPC_C class has associations with the following classes:
Class: CsGateWay IsInvokedBy - The Gateway object interfaces with the InServerExtRPC
to initiate a new Ingest Session through the Ingest Server.
InServer (Aggregation)

4.3.52 InServerExtRPC_S Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
This is the server implementation that defines the services for creating a new session.

Attributes:

None

Operations:

CreateSession - Creates a new session for a given client upon receipt of an Authentication
Request.
Arguments: handle_t InServerBH, char *GatewayStringBH, error_status_t
*CreateSessStatus
Return Type: Void
Privilege: Public

Associations:

The InServerExtRPC_S class has associations with the following classes:
InServer (Aggregation)

4.3.53 InServerIntRPC_C Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:

4-74 305-CD-009-001

This is the client/proxy implmentation for the InServer object class. The provided services
are to be used by the InSession object class.

Attributes:

None

Operations:

DeleteSession - Deletes the specified session from the InServer's Session List.
Arguments: handle_t InServerBH, int SessionId, error_status_t *DelSessStatus
Return Type: Void
Privilege: Public

Associations:

The InServerIntRPC_C class has associations with the following classes:
Class: InSession IsInvokedBy - InSession intefaces with InServerIntRPC_C to delete itself
from the InServer's session list.
InServer (Aggregation)

4.3.54 InServerIntRPC_S Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
This is the server implementation (factory) for the InServer object class. The provides
services are to be used by the InSession object class.

Attributes:

None

Operations:

DeleteSession - Deletes the specified session from the InServer's Session List.
Arguments: handle_t InServerBH, int SessionId, error_status_t *DelSessStatus
Return Type: Void

4-75 305-CD-009-001

Privilege: Public

Associations:

The InServerIntRPC_S class has associations with the following classes:
InServer (Aggregation)

4.3.55 InSession Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Persistent Class:
Purpose and Description:
This is the super object class for specialization object classes that handle specific external
interfaces. In general, the object class manages the hand-shaking protocal with the ingest
service requestor. It verifies that the requestor has privilege to perform the data ingest
service. The InSession instantiates the InRequest and adds to the InRequestList to be
processed. In addition, the InSession allows cancellation, suspension, and resumption of
the Ingest Request processing running under the session. Suspension and resumption are
post Release A functions.

Attributes:

myClientId - Session's client identifier.
Data Type: char *
Privilege: Private
Default Value:

mySessionGWBH - Session's binding handle with the Gateway.
Data Type: char *
Privilege: Private
Default Value:

mySessionId - The information that uniquely identifies the session.
Data Type: int
Privilege: Private
Default Value:

4-76 305-CD-009-001

Operations:

InitSessServer - Starts up the session. The operation is invoked by the Ingest Server upon
receipt of an Create Session request from Gateway.
Arguments: char *GatewayBH
Return Type: int
Privilege: Public

ProcessRequest - Once DAN is received from the Client, this operation instantiates a new
Request an adds the request to the Ingest Request List, and sends DAA (DAN
Acknowledgement) to the Client.
Arguments: void
Return Type: int
Privilege: Public

ResumeSession - Resumes the session. All ingest processing running under the session
will be resumed. This is a post Relase A service.
Arguments: void
Return Type: int
Privilege: Public

SuspendSession - Suspends the session. All ingest processing running under the session
will be suspended. This is a post Release A service.
Arguments: void
Return Type: int
Privilege: Public

TerminateSession - Terminates the session. All ingest processing running under the
session will be terminated.
Arguments: void
Return Type: int
Privilege: Public

Associations:

The InSession class has associations with the following classes:
Class: InRequest Creates - An instance of InSession object could create one or more
instance of InRequest objects.
Class: InServerIntRPC_C IsInvokedBy - InSession intefaces with InServerIntRPC_C to
delete itself from the InServer's session list.
Class: InSessionEcsRPC_C IsInvokedBy
Class: InRequestInfo Manages - The InSession object class manages the InRequestInfo
object class.

4-77 305-CD-009-001

Class: InServer Manages - All instance of InSession object is managed by one instance of
InServer object.
Class: InMessage Receives/Sends - The InSession object interfaces with the InMessage
object to access data messages that are interchanged between Ingest and the external Client.

4.3.56 InSessionEcsRPC_C Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This is the client/proxy implementation that defines services for sending outgoing data
messages from the ECS Ingest.

Attributes:

None

Operations:

ecsDDN - The RPC is invoked by ECS Ingest to send the Data Delivery Notice (DDN) data
message to the external client.
Arguments: handle_t GatewayBH, char *DDN, error_status_t ecsDDNstatus
Return Type: Void
Privilege: Public

Associations:

The InSessionEcsRPC_C class has associations with the following classes:
Class: InSession IsInvokedBy
CsGateWay (Aggregation)

4.3.57 InSessionEcsRPC_S Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:

4-78 305-CD-009-001

This is the server implementation that defines services for sending outgoing data messages
from ECS Ingest to external client.

Attributes:

None

Operations:

ecsDDN - The RPC is invoked by ECS Ingest to send DDN (Data Delivery Notice) data
message to the external client.
Arguments: handle_t GatewayBH, char *DDNmsg, error_status_t ecsDDNstatus
Return Type: Void
Privilege: Public

Associations:

The InSessionEcsRPC_S class has associations with the following classes:
CsGateWay (Aggregation)

4.3.58 InSessionExtRPC_C Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This is the client/proxy implementation that defines the RPC (Remote Procedure Call) for
delivering data message from the external Client to ECS/Ingest.

Attributes:

None

Operations:

extDAN - This is the RPC that delivers the Data Availability Notice (DAN) data message from
the external client to ECS Ingest.
Arguments: handle_t InSessBH, char *DANmsg, char **DAAmsg, error_status_t
*extDANstatus

4-79 305-CD-009-001

Return Type: Void
Privilege: Public

extDDA - The is the RPC that delivers the Data Delivery Ack (DDA) from the external
client to ECS Ingest.
Arguments: handle_t InSessBH, char *DDAmsg, error_status_t *status
Return Type: Void
Privilege: Public

Associations:

The InSessionExtRPC_C class has associations with the following classes:
Class: CsGateWay Invokes - The Gateway object interfaces with the InSessionExtRPC
object to deliver the DAN and DDA data messages received from the external Client to
Ingest Session.
InSession (Aggregation)

4.3.59 InSessionExtRPC_S Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
This is the server implementation that defines services for sending data messages from the
external client to ECS Ingest.

Attributes:

None

Operations:

extDAN - This is the RPC that delivers the Data Availability Notice (DAN) data message to
ECS Ingest.
Arguments: handle_t InSessBH, char *DANmsg, char **DAAmsg, error_Status_t
*extDANstatus
Return Type: Void
Privilege: Public

extDDA - This is the RPC that delivers the Data Delivery Ack (DDA) from the external

4-80 305-CD-009-001

client to ECS Ingest.
Arguments: handle_t InSessBH, char *DDAmsg, error_status_t *extDDAstatus
Return Type: Void
Privilege: Public

Associations:

The InSessionExtRPC_S class has associations with the following classes:
InSession (Aggregation)

4.3.60 InSessionInfo Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Keeps track of all the sessions running under the Ingest Server.

Attributes:

ClientID - The identifier of the external client.
Data Type: char *
Privilege: Private
Default Value:

SessionID - The identifier of the Ingest Session.
Data Type: int
Privilege: Private
Default Value:

Operations:

DeleteSession - Deletes a session from the Ingest Server's session list.
Arguments: int SessionID
Return Type: int
Privilege: Public

ListSessions - Lists all sessions in the Ingest Server's session list.

4-81 305-CD-009-001

Arguments: void
Return Type: int
Privilege: Public

SearchSession - Searches for a session in the Ingest Server's session list based on the
session identifier.
Arguments: int SessionID
Return Type: int
Privilege: Public

SearchSession - Searches for a session in the Ingest Server's session list based on the
external client identifier.
Arguments: char *ClientID
Return Type: int
Privilege: Public

Associations:

The InSessionInfo class has associations with the following classes:
Class: InServer IsManagedBy

4.3.61 InSessionIntRPC_C Class

Parent Class: Not Applicable
Public: Yes
Distributed Object: Yes
Purpose and Description:
This is the client/proxy implementation for exporting the data messages to the InSession
object class.

Attributes:

None

Operations:

IntDDN - This is the RPC that exports the Data Delivery Notice (DDN) data message to the
InSession object class.
Arguments: handle_t InSessBH, char *DDN, error_status_t IntDDNstatus
Return Type: Void

4-82 305-CD-009-001

Privilege: Public

Associations:

The InSessionIntRPC_C class has associations with the following classes:
Class: InRequest Invokes - The InRequest object class interfaces with the
InSessionIntRPC_C object class to export data message(s) to the InSession object class.
InSession (Aggregation)

4.3.62 InSessionIntRPC_S Class

Parent Class: Not Applicable
Public: No
Distributed Object: Yes
Purpose and Description:
This is the server implementation for exporting data messages to the InSession object class.

Attributes:

None

Operations:

InDDN - This is the RPC that exports the Data Delivery Notice (DDN) data message to the
InSession object class.
Arguments: handle_t InSessBH, char *DDN, error_status_t InDDNstatus
Return Type: Void
Privilege: Public

Associations:

The InSessionIntRPC_S class has associations with the following classes:
InSession (Aggregation)

4-83 305-CD-009-001

4.3.63 InShortDAA Class

Parent Class: InMessage
Public: No
Distributed Object: No
Purpose and Description:
This object class populates the short DAA (DAN Acknowledgement) data message to be
sent to the external Client after the receipt of the DAN.

Attributes:

myShortDAA - This is the short DAA (DAN Acknowledgement) data message.
Data Type: ShortDAAmsg
Privilege: Private
Default Value:

Operations:

FillDAA - This function will package the short DAA for the DAN Acknowledgement.
Arguments: int DAAStatus, int DANSeqNo
Return Type: Void
Privilege: Public

Associations:

The InShortDAA class has associations with the following classes:
None

4.3.64 InShortDDN Class

Parent Class: InMessage
Public: No
Distributed Object: No
Purpose and Description:
This object class populates the short DDN (Data Delivery Notice) data message to be sent
to the external Client after the data is archived.

4-84 305-CD-009-001

Attributes:

myShortDDN - Short Data Delivery Notice (DDN) data message.
Data Type: Short DDN msg
Privilege: Private
Default Value:

Operations:

FillDDN - Populates the short DDN data message with the given status information.
Arguments: int DDNStatus, int DANSeqNo
Return Type: Void
Privilege: Public

Associations:

The InShortDDN class has associations with the following classes:
None

4.3.65 InSourceMCF Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This class retains configuration information on source input files (i.e., source parameter
name, parameter location). This class provides services to retrieve, delete, and add
configuration information for a specific source metadata configuration.

Attributes:

myDataType - This attribute specifies the data type (e.g,, CER00, LIS00) associated with the
source metadata configuration file.
Data Type: char*
Privilege: Private
Default Value:

myFileType - This attribute specifies the file type (e.g. metadata, science) associated with

4-85 305-CD-009-001

the source metadata configuration file.
Data Type: char*
Privilege: Private
Default Value:

myVersionNumber - This attribute identifies the version number of the source
configuration file.
Data Type: int
Privilege: Private
Default Value:

Operations:

AddParInfo - This service provides the ability to add a record to the existing InSourceMCF
Arguments:

DeleteParInfo - This service provides the ability to delete a record from the InSourceMCF
Arguments:

GetParInfo - This service returns information for a specific target parameter such as the
source parameter name, parameter location, and computer data type
Arguments:

InSourceMCF - This is the constructor service.
Arguments:

Associations:

The InSourceMCF class has associations with the following classes:
Class: InMetadata defines - The InSourceMCF class defines the InMetadata class by
providing format informatin on input metadata files.
Class: InTemplateEditor maintains - The InTemplateEditor class maintains the
InSourceMCF class by providing the ability to create new instances and modify existing
instances of the InSourceMCF class.

4-86 305-CD-009-001

4.3.66 InStatusMonitor Class

Parent Class: InGUISession
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Provides operations personnel the capability to monitor the state of ingest request(s) via the
GUI interface. It allows operations personnel to specify all ingest requests or particular
ones of interest for viewing. This is a derived object class from the InGUISession object
class. It inherits all data and service members provided by the InGUISession object class.

Attributes:

myRequestCriteria - The criteria information provided by the operations personnel which is
to be used for the ingest request searching.
Data Type: struct *
Privilege: Private
Default Value:

myRequestIdList - The list of ingest requests that satisfies the search criteria specified by
the operations personnel for request status monitoring.
Data Type: int []
Privilege: Private
Default Value:

Operations:

ProcessRequest - Invokes appropriate services to get the state of ingest request(s). This
service overloads the ProcessRequest() service defined in the InGUISession object class.
Arguments: struct *RequestCriteria, int RequestIDList[]
Return Type: Void
Privilege: Public

Associations:

The InStatusMonitor class has associations with the following classes:
Class: InRequestList QueriesRequest(s)From - The InStatusMontiro object interfaces with
InRequestList to locate InReqeust(s) for status monitoring.

4-87 305-CD-009-001

4.3.67 InSystemThreshold Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
Persistent storage of Ingest system-level thresholds that limit ingest request traffic and data
volume.

Attributes:

myIngestRequestThreshold - Site-wide threshold for total allowed number of ongoing ingest
requests.
Data Type: int
Privilege: Private
Default Value:

myIngestVolumeThreshold - Site-wide threshold for total data volume of all ongoing
ingest requests.
Data Type: int
Privilege: Private
Default Value:

Operations:

GetIngestRequestThreshold - Get the site-wide threshold for the maximum number of
requests allowd to be processed concurrently.
Arguments: void
Return Type: int
Privilege: Public

GetIngestVolumeThreshold - get the site-wide threshold for total number of data volume
to be processed concurrently.
Arguments: void
Return Type: int
Privilege: Public

SetIngestRequestThreshold - Set the site-wide threshold for the maximum number of
requests allowed to be processed concurrently.
Arguments: int NewRequestTheshold
Return Type: void

4-88 305-CD-009-001

Privilege: Public

SetIngestVolumeThreshold - Set the site-wide threshold for total number of data volume
allowed to be processed concurrently.
Arguments: int NewVolumeThreshold
Return Type: void
Privilege: Public

Associations:

The InSystemThreshold class has associations with the following classes:
InThreshold (Aggregation)

4.3.68 InTemplateEditor Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Purpose and Description:
Provides operations personnel with the capabilities to edit the templates associated with the
Ingest Preprocessing via the GUI interface.

Attributes:

TemplateType - Indicates the template to which is to be edited.
Data Type: int
Privilege: Private
Default Value:

Operations:

ProcessRequest - Allows operations personnel to edit the specified template.
Arguments: int TemplateType
Return Type: int
Privilege: Public

Associations:

4-89 305-CD-009-001

The InTemplateEditor class has associations with the following classes:
Class: InDataTypeTemplate maintains - The InTemplateEditor class maintains the
InDataTypeTemplate class by providing the ability to add new instances of the
InDataTypeTemplate class.
Class: InFileTypeTemplate maintains - The InTemplateEditor Class maintains the
InFileTemplate class by creating new instances of the InFileTemplate class.
Class: InSourceMCF maintains - The InTemplateEditor class maintains the InSourceMCF
class by providing the ability to create new instances and modify existing instances of the
InSourceMCF class.

4.3.69 InThreshold Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class: True
Purpose and Description:
This object tracks all of the thresholds for the ingest system.

Attributes:

None

Operations:

None

Associations:

The InThreshold class has associations with the following classes:
Class: InRequestManager ProvidesThresholdsfor - InRequestManager retries system and
external data provider based thresholds for ingest processing.

4.3.70 InThresholdController Class

Parent Class: InGUISession
Public: No
Distributed Object: No
Persistent Class:

4-90 305-CD-009-001

Purpose and Description:
Provides authorized operations personnel the capability to view or to set an ingest threshold
via the GUI interface. The types of ingest thresholds consist of: 1) ingest request threshold-
-maximum requests allowed to be processed concurrently, 2) data volume threshold--
maximum allowed data volume to be processed concurrently, and 3) transfer retry
threshold--number of data transfer retry attempts when failure occurred. The object class
is derived from the InGUISession object class. It interits all the data and service members
provided by the InGUISession object class.

Attributes:

myNewThreshold - The new value for the specified threshold with which the operations
personnel requested to replace.
Data Type: int
Privilege: Private
Default Value:

myThresholdType - Indicates the type of threshold that is to be replaced. The types of
ingest thresholds consist of: 1) ingest request threshold--maximum request allowed to be
processed concurrently, 2) data volume threshold--maximum data volume allowed to be
processed concurrently, and 3) data transfer retry threshold--number of transfer retry
attempts when failure occurred.
Data Type: int
Privilege: Private
Default Value:

Operations:

ProcessRequest - Invokes appropriate services to get/set the ingest threshold value. This
service overloads the ProcessRequest() service defined in the InGUISession object class.
Arguments: int ThresholdType, int NewValue
Return Type: Void
Privilege: Public

Associations:

The InThresholdController class has associations with the following classes:
Class: InThreshold Maintains

4-91 305-CD-009-001

4.3.71 InTransferredData Class

Parent Class: Not Applicable
Public: No
Distributed Object: No
Persistent Class:
Purpose and Description:
Performs services to instantiate ingested data files. Upon the creation of the
InTransferredData object class, if the Delivery Record file is provided, the object class
would contain the information for the grouping of the data type with the corresponding
files. Otherwise the data type information is provided in the input request.

Attributes:

myDataLocation - Indicates the disk location where the ingest files reside (after data
transmission).
Data Type: char*[]
Privilege: Private
Default Value:

myDataTypeIdList - The set of data types associated with the ingest files.
Data Type: char*[]
Privilege: Private
Default Value:

myFileIdList - The names of ingest files.
Data Type: char*[]
Privilege: Private
Default Value:

myFileVolumeList - The file sizes corresponding to the ingest files.
Data Type: int[]
Privilege: Private
Default Value:

Operations:

GetDtInfo - Provides the data type information for the associated ingest files.
Arguments: char *DataTypeId
Return Type: int
Privilege: Public

4-92 305-CD-009-001

GetFileInfo - Provides information of the ingest file (e.g., file name, file size).
Arguments: char *DataId, char *DataLocation, int FileVolume
Return Type: int
Privilege: Public

Associations:
The InTransferredData class has associations with the following classes:
 Class: InDataTransferTask Populates - The InDataTransfer object gets information on
 the data types and the files from the InTransferredData object.

4.4 Ingest CSCI Dynamic Model
Information is provided for the critical Ingest Subsystem scenarios. The scenarios are each in two
parts--the set of scenario steps and an event trace diagram. The set of scenario steps provides a text
description of the interactions between object classes in a scenario. The event trace diagram
pictorially describes the interaction between object classes and external interfaces participating in
a scenario.

4.4.1 Automated Network Ingest (Get) Scenario

ECS performs automated network ingest upon receipt of a Data Availability Notice (DAN)
stimulus. The Landsat-7, SDPF, TSDIS, and SCF interfaces are candidates for use of this protocol.
In this scenario, ECS will perform the data transfer (get) from the external location to the ECS
system.

If the external data provider is not a DCE client, there will an ECS Gateway that will translate the
TCP/IP socket service class received from the external data provider to the corresponding Remote
Procedure Call (RPC) provided by the ECS Ingest. In the scenario diagram, the "External Data
Provider Process" would be the Gateway if the external data provider does not have DCE.

The following list describes the Automated Network Ingest (Get) scenario using object classes.
Figure 4.4-1 is the corresponding event trace diagram. The numbers in the following list refer to
the steps in the diagram:

4-93 305-CD-009-001

Table 4.4-1. Automated Network Ingest Scenario (Get) Event Trace Diagram (1 of 2)
Step Service Description

1 CreateSession() The Ingest server instantiates a new Ingest Session
and setup the connection between Ingest Session
and the External Data Provider process

2 extDAN() External Data Provider process sends a DAN (Data
Availability Notice) message to Ingest system. The
DAN is verified and a DAA (DAN Ack) is returned.

3 WriteEvent() Log the receipt of DAN

4 ProcessRequest() Request to perform the automated network ingest re-
quest

5 constructor Instantiate an InNetworkIngestRequest object

6 GetRequestId() Assign an unique id for the ingest request

7 AddRequest() Insert the ingest request onto the request list

8 GetNext() Get the next request waiting to be processed

9 TransferDataByFile() Begin the data transfer processing

10 constructor Instantiate the InTransferredData object and popu-
late it with the contents from the DAN message

11 AllocateResource() Request allocation of an available staging device

12 GetInFileInfo() Get the file information

13 constructor Instantiate the InFile object

14 Transfer() data Transfer file from external location to the resource
object location in ECS Ingest system

14A GetFileInfo() Get the file information

15 Check() file Check the existence and size of the transmitted file

16 WriteEvent() Log the file transfer result

Repeat steps 12-16 until all ingest files have been
processed

17 GetDTInfo() Request the Data Type information

18 GetDTInfo() Get the Data Type information

19 constructor Instantiate InDataPreProcessTask object

20 PreprocessData() Performs appropriate data preprocessing (e.g.,
metadata check, conversion)

4-94 305-CD-009-001

Step Service Description

21 WriteEvent() Log the sending of insert request to DataServer

22 SendInsert() Send Insert Request to the appropriate DataServer

See DataServer Event Trace for the actual insert de-
tail

23 WriteEvent() Log the completion status of data ingest

Repeat steps 17-23 for each Data Type

24 ecsDDN Send DDN (Data Delivery Notice) to the External
Data Provider process informing the data transmis-
sion status

25 extDDA The External Data Provider process returns DDA
(Data Delivery Ack)

26 DeleteRequest() Removes the ingest request from the Ingest Request
List.

Table 4.4-1. Automated Network Ingest Scenario (Get) Event Trace Diagram (2 of 2)

4-95
305-C

D
-009-001

ExternalData

ProviderProcess InServer InSession

InRequest

List

InData

PreprocessTask
InTransferred

Data InFile

InRequest

Manager
InData

TransferTask InResourceIF

InHistory

LogInRequest InDataServer

InsertionTask
 I. Create a new

Ingest Session

 II. Receive (DAN)

Data Availability Notice

and Return DAA

 III. Request Ingest Procesing

 IV. Transfer Data to ECS

 V. Perform Preprocessing

(e.g., convert, metadata check)

 VI. Perform Data Insert

 VII. Send and

acknowledge

Data Delivery

 VIII. Delete Request from the

Ingest Request List

1

2

3

4

5

6

9

10

26

11

12

14, 14A, 15

13

19

23

24

25

16

18

7

21

22

17

8

20

Figure 4.4-1. In_Automated_Network_Ingest_Get_Event_Trace Diagram Dynamic Model

4-96 305-CD-009-001

4.4.2 Polling Ingest (Files) Scenario

The Polling Ingest (Files) scenario describes the mechanism by which the Ingest Subsystem
acquires data from data centers which may not support an interprocess communication interface
with ECS. The ECS/NESDIS and ECS/GDAO interfaces are candidates for use of this scenario.
The following list describes the Polling Ingest (Files) Scenario. Figure 4.4-2 is the corresponding
event trace diagram.

Table 4.4-2. Polling Ingest (Files) Event Trace Diagram (1 of 2)
Step Service Description

1 constructor Instantiate polling session (start timer) to detect new files from the
specified external directory

2 ProcessRequest() Initiate ingest processing

3 constructor Instantiate InDAN object class

4 GenerateDAN() Generate a DAN file with file information retrieved from the specified
directory location

5 constructor Create Network Ingest Request Object using the generated DAN file
as input

6 GetRequestId() Assign an unique id for the polling request

7 WriteEvent() Log receipt of Polling Request

8 AddRequest() Add request to the list

9 GetNext() Get the next request waiting to be processed

10 TransferDataByFile() Begin data transfer on a file by file basis

11 constructor Instantiate the InTransferredData object

12 AllocateResource() Allocation for an available staging resource

13 GetFileInfo() Get the file information

13A Check() Check the existence and size of the file

14 constructor Instantiate the File object

15 Transfer() Transfer file from Data Center to the resource object location in ECS
Ingest system

16 GetFileInfo() Check the existence and size of the transmitted file

17 WriteEvent() Log file transfer result

Repeat steps 13-17 until all files have been processed

4-97 305-CD-009-001

Step Service Description

18 GetDTInfo() Request the Data Type Information

19 GetDTInfo() Get the Data Type information

20 constructor Instantiate InDataPreprocessTask object

21 PreprocessData() Performs the appropriate data preprocessing (e.g., metadata check,
conversion)

22 WriteEvent() Log the sending of insert request to Data Server

23 SendInsert() Send data insert request to Data Server

See DataServer Event Trace for the actual insert detail.

24 WriteEvent() Log the completion status of data ingest

25 CleanupDirectory() Perform appropriate directory cleanup by means of moving the com-
pleted files to another directory

Repeat steps 2-25 for ingesting next directory

Table 4.4-2. Polling Ingest (Files) Event Trace Diagram (2 of 2)

4-98
305-C

D
-009-001

Conif

InPolling
Session InDAN

InRequest
List

InData
PreprocessTask

InTransferred
Data InFile

InRequest
Manager

InData
TransferTask

InResourceIF
InHistory

Log

InNetwork
Ingest Request

InDataServer
InsertionTask

 I. Startup Polling Client and
log start of Ingest

 II. Transfer Data to ECS

 III. Perform Preprocessing
(e.g, convert,
metadata check)

 IV. Perform Data Insert

V. Perform Directory Cleanup

1

17

20

7

10

11

15, 16

23

9

13, 13A

19
18

14

24

8

21

2, 3

4

5
6

12

22

25

Figure 4.4-2. In_Polling_Files_Ingest_Event_Trace Diagram

4-99 305-CD-009-001

4.4.3 Polling Ingest (Delivery Record) Scenario

The Polling Ingest (Delivery Record) scenario describes the mechanism by which the Ingest
Subsystem acquires data from External I/Fs which control the initiation of data transfer. The
EDOS interface is a candidate for use of the polling with delivery record scenario.

The following list describes the Polling Ingest (Delivery Record) Scenario. Figure 4.4-3 is the
corresponding event trace diagram.

Table 4.4-3. Polling Ingest (Delivery Record) Event Trace Diagram (1 of 2)
Step Service Description

1 constructor Instantiate polling session (start timer) to detect the Delivery Record
file from the specified ECS directory

2 ProcessRequest() Initiate Processing of request

3 constructor Create Network Ingest Request Object using the Delivery Record
File as input

4 GetRequestId() Assign an unique id for the polling request

5 WriteEvent() Log receipt of Polling Request

6 AddRequest() Add request to the list

7 GetNext() Get the next request waiting to be processed

8 TransferDataByFile() Begin data transfer processing

9 constructor Create the InTransferredData object

10 GetFileInfo() Get the file information

11 constructor Instantiate the File object

12 GetFileInfo() Get the file information.

12A Check() Check the existence and size of the transmitted file

13 WriteEvent() Log file verification result

Repeat steps 10-13 until all files have been processed

14 GetDTInfo() Request the Data Type Information from InDataTransferTask object.

15 GetDTInfo() Get the Data Type information from InTransferredData object.

16 constructor Instantiate InDataPreprocessTask object

17 PreprocessData() Performs appropriate data preprocessing (e.g., metadata check,
conversion)

4-100 305-CD-009-001

Step Service Description

18 WriteEvent() Log the sending of insert request to Data Server

19 SendInsert() Send data insert request to Data Server

See DataServer Event Trace for the actual insert detail.

20 WriteEvent() Log the completion status of data ingest

21 CleanupDirectory() Perform appropriate directory cleanup by means of moving the com-
pleted files to another directory
Repeat steps 14-21 for every Data Type

Table 4.4-3. Polling Ingest (Delivery Record) Event Trace Diagram (2 of 2)

4-101
305-C

D
-009-001

Conif

InPolling
Session InDAN

InRequest
List

InData
PreprocessTask

InTransferred
Data InFile

InRequest
Manager

InData
TransferTask

InResourceIF
InHistory

Log

InNetwork
Ingest Request

InDataServer
InsertionTask

 I. Startup Polling Client and
log start of Ingest

 II. Transfer Data to ECS

 III. Perform Preprocessing
(e.g, convert,
metadata check)

 IV. Perform Data Insert

V. Perform Directory Cleanup

1

17

20

7

10

11

15, 16

23

9

13, 13A

19
18

14

24

8

21

2, 3

4

5
6

12

22

25

Figure 4.4-3. In_Polling_Delivery_Record_Ingest_Event_Trace Dynamic Model

4-102 305-CD-009-001

4.4.4 User Network Ingest Scenario

The ECS provides the ECS users with the capability to perform interactive Network Ingest via the
GUI Interface. An User Session will be configured on the User's GUI Interface to accept the
request from the user via the GUI Interface and submit the request to the ECS system for data
ingest.

The following list describes the User Network Ingest scenario using object classes. Figure 4.4-4 is
the corresponding event trace diagram. The numbers in the following list refer to the steps in the
diagram:

Table 4.4-4. User Network Ingest Event Trace
Step Service Description

1 N/A User retrieves a Network Ingest Request Form via the WWW client

2 N/A The Form is filled by the user and is submitted to the Ingest Form Script
via HTTP daemon. (The HTTP daemon will parse the fields from the
Form and invoke Ingest Form Script.)

3 N/A The Ingest Form Script packages the fields from the Form into a DAN
data message.

4 CreateSession() The Ingest Form Script requests the ECS Ingest System for a new ses-
sion to process the ingest request.

5 extDAN() A DAN (Data Availability Notice) message is sent to the ECS Ingest sys-
tem. The DAN is verified and a DAA (DAN Ack) is returned.

6 N/A The Ingest Form Script reads the status from DAA and displays the sta-
tus to the WWW client
Refer steps 3 to 23 of Automated Network Ingest Scenario for detailed
ingest processing occurred in the Ingest system.

7 ecsDDN() When the ECS Ingest system completes the data ingest, it sends a DDN
(Data Delivery Notice) to Ingest Form Script

8 extDDA() The Ingest Form Script returns a DDA (DDN Ack) to the ECS Ingest sys-
tem

9 N/A The Ingest Form Script displays the ingest completion status to the
WWW client

4-103 305-CD-009-001

Figure 4.4-4. In_User_Network_Ingest_Event_Trace Diagram Dynamic Model

InNetworkIngest

WWW
Client
User InServer InSession

I. Get and fill in the Ingest
Request Form via http

III. Establish a Session and send
the DAN Data Message

IV.DAA (DAN Ack) is returned

V. When Ingest complete, send DDN
indicating completion status

VI. Return DDA (DDN Ack) and
display completion status

II. Package the fields in the
Request Form into a
DAN Data Message

2

4

5

6

7

9

8

3

1

4-104 305-CD-009-001

4.4.5 Hard Media Ingest Scenario

The ECS system provides operations personnel with the capability to perform hard media (e.g.,
8mm tape) ingest via the GUI Interface. A Media Ingest Session will be configured on the
Operator's GUI Interface to accept the request from the Operator via the GUI Interface and submit
the request to the ECS system for hard media ingest.

The following list describes the Hard Media Ingest scenario using object classes. Figure 4.4-5 is
the corresponding event trace diagram. The numbers in the following list refer to steps in the
diagram:

Table 4.4-5. Hard Media Ingest Event Trace

Step Service Description

1 constructor Operator selects the Media Ingest option from the GUI interface and
instantiates a media interface client to read inputs from the operator

2 CheckPrivilege() The Media Ingest Session verifies Operator's privilege

3 ReceiveMsg() Operator enters information needed for media ingest and the infor-
mation is read in

4 ProcessRequest() Request to perform the media ingest request

5 DownloadFiles() Request to download files from the media to disk

6 AllocateResource() Allocate an available staging device

7 AllocateResource() Allocate an available peripheral device

8 CopyFile() Copy files in bulk from the media to disk working area

9 DellocateResource() Deallocate the staging device

10 DellocateResource() Deallocate the peripheral device

11 CreateSession() The Media Ingest Session requests the Ingest System for a new
session to process the ingest request.

12 extDAN() A DAN (Data Availability Notice) message is sent to the Ingest sys-
tem. The DAN is verified and a DAA (DAN Ack) is returned.

13 SendMsg() The Media Ingest Session reads the status from DAA and displays
the status to Operator screen

Refer to steps 2 to 20 of Polling Ingest (Delivery Record) Scenario
for detailed ingest processing occurring in the Ingest system.

14 ecsDDN() When the Ingest system completes the data ingest, it sends a DDN
(Data Delivery Notice) to Media Ingest Session

15 extDDA() The Media Ingest Session returns a DDA (DDN Ack) to the Ingest
system

16 SendMsg() And Displays the ingest completion status to the Operator screen

4-105
305-C

D
-009-001

InMedia

IngestOperator InResourceIF

InServer

InSession

IV. DAA (DAN Ack) is returned

V. When Ingest completes, send DDN

indicating completion status

VI. Return DDA (DDN Ack) and

display completion status

to Operator

I. Accept Hard Media

Ingest from Operator

II. Allocate Resource Device

and download files from

Hard Media

III. Establish a Session and send

a DAN Data Message

3

6, 7, 8, 9, 10

11

12

13

14

16

1

15

2

4, 5

Figure 4.4-5. In_Hard_Media_Ingest_Event_Trace Diagram

4-106 305-CD-009-001

4.4.6 Ingest History Log Viewing Scenario

The ECS system provides operations personnel with the capability to view the Ingest History Log,
a log that contains the results of all the past ECS ingest requests. The operations personnel have
the capability to specify the search criteria (e.g., time range), the provider ID, data set name, and
final request status of the Ingest History Log for log display. A LogMonitor screen will be
configured on the Operator's GUI Interface to accept the log monitor request and the criteria
specification from the operations personnel via the GUI Interface and invoke the appropriate
service (provided by the Log object class) to get and display the Ingest History Log information to
the operations personnel's GUI screen.

The following list describes the Ingest History Log Viewing scenario using object classes. Figure
4.4-6 is the corresponding event trace diagram. The numbers in the following list refer to the steps
in the diagram:

Table 4.4-6. Ingest History Log Event Trace Diagram
Step Service Description

1 constructor Operator selects the Ingest Log Viewing option from the GUI interface
and instantiates an InLogMonitor object to read input from the operator

2 CheckPrivilege() Verify the Operator's privilege for log viewing

3 ReceiveMsg() Operator enters criteria information for the search and is read in as a log
monitor request

4 ProcessRequest() Request to perform log viewing

5 GetEvent() Based on the criteria provided by the Operator, invoke the service to que-
ry the Ingest History Log according to the Operator's specification

6 DisplayResults() Format and display the log results to the Operator's screen

4-107
305-C

D
-009-001

Operator InRequestListInStatusMonitor

 I. Accept Ingest Status Monitoring

Request from Operator

 II. Get the Status Information

of the Ingest Requests

specified by Operator

 III. Display results to the

Operator's screen

InRequest

1

4

3

6

5

7

2

Figure 4.4-6. In_Ingest_History_Log_Viewing_Event_Trace Diagram Dynamic Model

4-108 305-CD-009-001

4.4.7 Operator Ingest Status Monitoring Scenario

The ECS system provides operations personnel with the capability to monitor the status of the
ingest requests that are in progress. The operator has the capability to look at the status of all
requests or at only specific requests. An InStatusMonitoring screen will be configured on the
Operator's GUI Interface to accept the ingest status monitoring request and the criteria
specification from the operations personnel via the GUI Interface and invoke the appropriate
service to get and display the request states information to the operations personnel's GUI screen.

The following list describes the Operator Ingest Status Monitoring scenario using object classes.
Figure 4.4-7 is the corresponding event trace diagram. The numbers in the following list refer to
the steps in the diagram:

Table 4.4-7. Operator Ingest Status Monitoring Event Trace
Step Service Description

1 constructor Operator selects the Ingest Request Status Monitoring option from the GUI
interface and instantiates a InStatusMonitor object to read input from the
operator

2 CheckPrivilege() Verify the Operator's privilege for request status viewing

3 ReceiveMsg() Operator enters criteria information for the request search and is read in as
a status monitor request

4 ProcessRequest() Request to perform the request status monitoring

5 SearchRequest() Based on the criteria provided by the Operator, search for the ingest re-
quest

6 GetStatus() Get the status of the request

Repeat step 6 for every request that satisfies the criteria specification

7 DisplayResults() Format and display the states of ingest requests to the Operator's screen

4-109
305-C

D
-009-001

Operator InRequestListInStatusMonitor

 I. Accept Ingest Status Monitoring

Request from Operator

 II. Get the Status Information

of the Ingest Requests

specified by Operator

 III. Display results to the

Operator's screen

InRequest

1

4

3

6

5

7

2

Figure 4.4-7. In_Ingest_Operator_Status_Monitoring_Event_Trace Diagram

4-110 305-CD-009-001

4.4.8 User Ingest Status Monitoring Scenario

The ECS system provides the science users with the capability to monitor the status of the user's
on-going ingest requests. A StatusMonitoring screen will be configured on the User's GUI
Interface to accept the ingest status monitoring request from the user via the GUI Interface and
invoke the appropriate service to get and display the request state information to the user's GUI
screen.

The following list describes the User Ingest Status Monitoring scenario using object classes.
Figure 4.4-8 is the corresponding event trace diagram. The numbers in the following list refer to
the steps in the diagram:

Table 4.4-8. User Ingest Status Monitoring Event Trace
Step Service Description

1 constructor User selects the Ingest Request Status Monitoring option from the GUI
interface and instantiates a StatusMonitor object to read input from the
user

2 CheckPrivilege() Verify the User's privilege for status monitoring

3 ReceiveMsg() User enters information needed for the request and is read in as a status
monitor request

4 ProcessRequest() Request to perform the user request status monitoring

5 SearchRequest() Based on the criteria provided by the user, search for the ingest request

6 GetStatus() Get the status of the request

Repeat step 6 for every user owned request

7 DisplayResults() Format and display the state of the user's requests to the User's screen

4-111
305-C

D
-009-001

User
InRequestList

InStatusMonitor

 I. Accept the User Status Monitoring

Request from the User

 II. Get the State Information of

User Ingest Requests

 III. Display the results to

the User's screen

InRequest

1

4

3

7

5

6

2

Figure 4.4-8. In_Ingest_User_Status_Monitoring_Event_Trace Diagram

4-112 305-CD-009-001

4.4.9 Operator Request Update Scenario

The ECS system provides operations personnel with the capability to update an on-going ingest
request. The updates include: change priority, cancel, suspend, and resume (only the cancel option
is available at Release A). An InRequestController screen will be configured on the Operator's
GUI Interface to accept the update request from the operations personnel via the GUI Interface and
invoke the appropriate service to perform the request update and display the update results to the
operations personnel's GUI screen.

The following list describes the Operator Request Update scenario using object classes. Figure
4.4-9 is the corresponding event trace diagram. The numbers in the following list refer to the steps
in the diagram:

Table 4.4-9. Operator Request Update Event Trace
Step Service Description

1 constructor Operator selects the Request Update option from the GUI interface
and instantiates an InRequestController object to read input from the
operator

2 CheckPrivilege() Verify the Operator's privilege

3 ReceiveMsg() Operator enters request update information and is read in as a re-
quest update request

4 ProcessRequest() Request to perform the request update

5 SearchRequest() Based on the criteria provided by Operator, search for the ingest re-
quest

6 GetState() Get the current state of the request

7 ChangePriority(),
Cancel(),
Suspend(), or
Resume()

Invoke the appropriate service to perform the specified request up-
date: Cancel(), Suspend, or Resume()

8 CancelTransfer(),
SuspendTransfer(), or
ResumeTransfer()

If the request is in Data Transferring state, ask the DataTransferTask
object to perform the specified service:
CancelTransfer(), SuspendTransfer(), or ResumeTransfer()

9 CancelPreprocess(),
SuspendPreprocess(), or
ResumePreprocess

If the request is in the Data Preprocessing state, ask the DataPrepro-
cessTask object to perform the specified service:
CancelPreprocess(), SuspendPreprocess(), or ResumePrepro-
cess()

10 CancelInsert(),
SuspendInsert(), or
ResumeInsert()

If the request has already been sent to the Data Server for insertion,
ask the DataServerInsertionTask object to perform the specified ser-
vice:
CancelInsert(), SuspendInsert(), or ResumeInsert()

11 SendMsg() Display the request update results to the Operator's screen

4-113
305-C

D
-009-001

Operator InRequestList
InRequestInRequest

Controller

I. Accept Operator

Ingest Request Update

Request

InDataTransfer

Task

InDataServer

InsertionTask
InData

PreprocessTask

II. Search for the

Operator specified request

III. Check the state

the request is in

IV. Perform update on the

selected ongoing

Ingest Request

V. Display request update

results to the Operator's screen

1

3

4

5

6

11

7

8

9

10

2

Figure 4.4-9. In_Ingest_Operator_Request_Update_Event_Trace Diagram

4-114 305-CD-009-001

4.4.10 Preprocessing Scenario

The Ingest Subsystem provides services to preprocess all types of ingested data. Preprocessing
includes extraction of metadata, conversion of metadata into a standard ECS format, metadata
range/field checking, and converting/reformatting science and ancillary data.

The following scenario describes the interaction between the Preprocessing CSC and external
classes from the initiation of data granule preprocessing to insertion of the preprocessed data into
the Data Server Subsystem. The scenario applies to a data type granule which consists of a separate
science and metadata file or a single data file where the metadata is embedded within the science
data. Other categories of data type granules follow a similar scenario. Figure 4.4-10 is the
corresponding event trace diagram.

Table 4.4-10. Preprocessing Event Trace (1 of 2)

Step Service Description

1 Preprocess Initiate preprocessing task

2 InDataPreprocessList Create an initial list of files to be inserted into the
Data Server Subsystem

3 Preprocess Initiate preprocessing on data granule

4 GetDTInfo Obtain a list of file types associated with specific
data type

5 GetNext Get next file off of Input List created by Request
Processing CSC

6 GetFileType Obtain file type of file

7 GetFTInfo Get information characterizing file type

8 InScienceData Assume file type is science data, an instantiate
correct InScienceData specialization

9 Preprocess Execute required preprocessing on science data

10 InFile Create a file object to store result of science data
preprocessing

11 AddtoList Add new file to Data Server insertion list

12 GetNext Get next file off of Input List created by Request
Processing CSC

13 GetFileType Obtain file type of file

14 GetFTInfo Get information characterizing file type

15 DsCIDescriptor(GIClient &, UR &, DsSdTypeID
&

Create appropriate DsCIDescriptor object

16 GetMCF(ostream &) Access target metadata configuration file

17 InFile Create a file object to store target metadata con-
figuration file

4-115 305-CD-009-001

Step Service Description

18 InMetadata Assume file type is metadata, and instantiate cor-
rect metadata specialization

19 Preprocess Execute required preprocessing on metadata

20 PGS_MET_INIT Initial metadata tool and load target metadata
configuration file

21 PGS_MET_GetNext Get next target metadata parameter

22 GetParInfo Get information correlating target metadata pa-
rameter with source parameter name and loca-
tion of required data

23 GetParVal Perform necessary functions to obtain required
value out of source metadata file

24 Read Extract required value from source metadata file

25 PGS_MET_SET Set value in target metadata configuration file

26 Repeat Steps 20-25

27 PGS_MET_WriteFile Write final target metadata configuration file into
a PVL file

28 InFile Create a file object store metadata PVL file

29 Validate Validate metadata PVL file

30 AddtoList Add new file to Data Server insertion list

31 SendInsert Initiate data insertion

32 DsCIESDTReferenceCollector(GIUR &dataser-
ver, GIClient &, DsTSessionID=NULL

Open a data server session

33 DsCICommand(Advertisement&,GIParameter-
List &)

Create a command

34 SetParameters(pI: GIParameterList &) Define files to be inserted

35 DsCIRequest(cmd: DsCICommand*, pty:
DsTRequestPriority, cat: DsTRequest(Catego-
ry)

Create a request referencing associated com-
mands

36 Submit(DsCIESDTCollector&, GIURVec-
tor*=NULL):GIStatus

Submit Request

Table 4.4-10. Preprocessing Event Trace (2 of 2)

4-116
305-C

D
-009-001

InRequest

InDataPreprocessTask
InDataType

InDataPreprocessList InDataTypeTemplate
InFile InFileTypeTemplate

InScienceData
DsCIDescriptor InMetadata

InMetadataT InSourceMCF

InDataServer

InsertionTask

DsCIESDT

Reference

Collector DsCICommand DsCIRequest

Preprocess

InDataPreprocessList

GetDTInfo

GetNext

Preprocess

GetFileType

GetFTInfo

InScienceData

Preprocess

InFile

AddtoList

GetNext

GetFileType

GetFTInfo

DsCIDescriptor

GetMCF

InFile

InMetadata

Preprocess

PGS_MET_INIT

PGS_MET_GetNext GetParInfo

Read
PGS_MET_SET

PGS_MET_WriteFile

InFile

Validate

AddtoList

SendInsert

DsCIReference

Collector

DsCICommand

SetParameters

DsCIRequest

Submit

Figure4.4-10. In_Ingest_Preprocessing_Scenario1_Event_Trace Diagram

4-117 305-CD-009-001

4.4.11 Ingest Fault/Error Scenario

This section presents the fault and error state machines for the ECS Ingest Subsystem. Two
scenarios will be covered; one for the Ingest Processing and the other for the Media Handling
processing.

Figure 4.4-11 illustrates the state machine for the whole Ingest processing function. Most faults
and errors that occur during Ingest processing are related to the communications network. The
identified fault and error categories are Transfer failure, Resource failure, and CI-to-CI interface
failure. For each identified error category, an operator-tunable threshold will be defined indicating
the number of retries the ECS Ingest software should attempt. Upon exhaustion of retry attempts
(i.e., the retry threshold limit is met) and the error condition persists, the ECS Ingest software will
alarm the ECS operations personnel. ECS operations personnel will perform diagnostics and try
to fix the problem. If necessary, ECS operations personnel will coordinate with the external data
source operations personnel to resolve the problem.

Figure 4.4-12 depicts the state machine for the Media Handling processing. Similar to the error
categories identified for the communications network, the Resource failure is another error
category where ECS operations personnel may be involved. Again after retry attempts have
reached the threshold limit, the ECS Ingest software will alarm ECS operations personnel of the
problem.

4-118 305-CD-009-001

Figure 4.4-11. In_Ingest_Network_Ingest_Get_State_Diagram

Await
DAN

Data
Available Transfer

Preprocess
Data

Insert
to DS

Await
DDA

DONE

Receive Valid DAN,
Request Count < MAX

/
Send DAA,

Incr. Request Count

Resource Available
/

Begin Transfer Transfer Success.
/

Begin Preprocess Data
Preprocess Succ.

/
Begin Data Insersion

Receive Succ. Insert Status
/

Send DDN
Receive DDA

/
Decr. Request Count

Network Error,
Transf. Count < MAX

/
Retry Transfer,

Incr. Transfer Count

Preprocess Error
/

Send DDN with Error

Insert Network Error,
Timeout

/
Send DDN with Error,

Notify Operator for altern. insert

Insert Network Error,
/

Set Timer

Resource Error
/

Set Timer

(Receive Valid DAN, Request Count = MAX) OR
(Receive Invalid DAN) OR
(Receive Duplicate DAN)

/
Send DAA with Error

Receive Unsucc. Insert Status
/

Send DDN with Error

Network Error,
Transfer Count = MAX

/
Send DDN with Error,

Notify Operator

Data Not Available
/

Send DDN with Error

Resource Error,
Resource Timeout

/
Send DDN with Error,

Notify Operator

4-119 305-CD-009-001

Figure 4.4-12. In_Ingest_Media_Ingest_State Diagram

Await
Device

Allocation

Allocate
Device

Mount
Device

Copy
File Done

Receive Device Allocation
/

Request Device Alloc. Resource Allocated
/

Mount Media Mount Succ.
/

Copy Files from Media

Copy Files Succ.
/

Dismount Media

Device Alloc. Error
/

Set Timer

Device Alloc. Error,
Timeout

/
Notify Operator

Mount Error
/

Request Device Alloc.,
Notify Operator

Copy File Error
/

Request Device Alloc.,
Notify Operator

4-120 305-CD-009-001

4.5 CSCI Structure
Table 4.5-1 shows the Computer System Components (CSCs) that comprise the Ingest CSCI.
Details for each CSC are provided in the following paragraphs.

Figure 4.5-1 shows the interactions of Ingest CSCs. Non-Ingest components are indicated by
shading.

The Ingest Session Manager CSC sets up ingest sessions with external data providers (e.g., TSDIS
and SDPF), via the CSS TCP/IP-to-OODCE Gateway and with other Ingest clients--Polling Ingest
Client Interface CSC, User Network Ingest Interface CSC, and Operator Ingest Interface CSC.
External data providers submit Data Availability Notices (DANs) to request data ingest. Polling
Ingest Client Interface components poll accessible file system locations to detect data to be
ingested; the component submits an equivalent DAN. The User Network Ingest Interface CSC
allows an authorized science user to create and submit a DAN interactively. The Operator Ingest
Interface CSC allows authorized operations staff to prepare physical media for ingest and to create
an equivalent DAN.

Table 4.5-1. Ingest CSCI Components
CSC Description Type (Custom=DEV;

off-the-shelf=OTS)
Ingest Session
Manager

Provides a template that instantiates other client CSCs. DEV

Polling Ingest
Client Interface

Polls for data files or Delivery Record files in an agreed location DEV

Ingest Request
Processing

Moderates ingest processing steps DEV

Ingest Data
Preprocessing

Performs required preprocessing and interface with the Data
Server for data insertion

DEV

Ingest Data
Transfer

Transfers data from source to ECS staging space DEV

Operator Ingest
Interface

GUI screens allowing operations staff ingest of hard media, on-
going ingest request status monitoring, completed ingest re-
quest information viewing, ingest request controlling (e.g.,
canceling request), and ingest threshold controlling (i.e. to view
or to set the threshold).

DEV

User Network In-
gest Interface

GUI screens allowing users to ingest approved data and to per-
form ongoing ingest request status monitoring

DEV

Ingest DBMS Data Base Management System used to store and provide ac-
cess to the Ingest History Log and other ingest internal data

OTS

Ingest Adminis-
tration Data

Provide services to access the History Log and administrative
information of the Ingest Subsystem

DEV

Peripheral Soft-
ware

Provide all media peripheral access software and operator ad-
ministration functions for ingest peripherals

Reuse

Viewing Tools Tools to allow displaying of ingested data for validation (analy-
sis) purposes

Reuse

Data Storage
Software

Software to store Level 0 data on working storage and reposi-
tory storage (for one year)

Reuse

Resource Ad-
ministration

Operator administration software to manage and control the
Data Storage Software

Reuse

Client Provides Science Data Server client interface services. Reuse

4-121 305-CD-009-001

The Ingest Session Manager CSC submits ingest requests (containing DAN data items) to the
Ingest Request Processing CSC. The Ingest Request Processing CSC manages subsequent request
processing. The Ingest Request Processing CSC invokes the Data Transfer CSC to transfer data
from external locations. The Ingest Request Processing CSC invokes the Data Preprocessing CSC
to preprocess ingested data (e.g., validate metadata parameters) and to insert data into the Data
Server.

The shaded Data Server CSCs--Peripherals, Data Storage, Client, and Resource Administration--
provide data storage and peripheral access services. In the case of Level 0 data ingest, the Data
Server CSCs are reused in the Ingest Subsystem and implemented on Ingest Subsystem hardware.
For non-Level 0 data, the Ingest and Data Server CSCs are implemented on Data Server hardware.

Figure 4.5-1. Ingest CSC Interaction

4.5.1 Ingest Session Manager CSC

The Session Manager CSC provides the fundamental capabilities to ingest data into the ECS
system. The CSC can be tailored to fit in a specific interface and is comprised of the InServer,
InServerExtRPC, InSession and InSessionExtRPC object classes. This CSC corresponds to the
"Generic Ingest Client Shell" CSC described in the SDPS System Design Specification. Figure
4.5-2 illustrates the interaction between an external data source and the Ingest Session Manager
CSC.

The InServerExtRPC and InSessionExtRPC object classes define the DCE Remote Procedure
Calls (RPCs) interface. The client is responsible for invoking the RPCs to request Ingest services.
The client initializes a connection to ECS Ingest Subsystem by invoking the CreateSession() RPC
of the InServerExtRPC object class. This RPC creates an Ingest Session and establishes a
connection with the external source. All the subsequent interactions with the external source are
defined in the InSessionExtRPC object class.

Gateway
(CSS)

Ingest
Session
Manager

User
Network
Ingest

I/F

Ingest
Request

Processing

InData
Transfer

InData
Prepro-
cessing

Data
Storage
(Data

Server)

Client
(Data

Server)

Polling
Ingest
Client

I/F

Operator
Ingest

I/F

External
Data

Providers

Peripherals
(Data

Server)
Resource

Admin
(Data

Server)

= External entity

= Ingest CSC

= External CSC

4-122 305-CD-009-001

If the external data source is not a DCE client, there will be an ECS Gateway that will receive the
TCP/IP socket service calls from the external data source and translate the socket service calls into
DCE RPC calls. The ECS Gateway will be supplied by the CSS Subsystem with support from
Ingest. When the ECS Gateway receives an Authentication Request from the external source, it
authenticates the client and invokes the CreateSession RPC of the InServerExtRPC. A session is
created for the client and all other subsequent messages received over the TCP/IP sockets from that
client are mapped to an RPC and forwarded to the associated InSessionExtRPC object class.

The InServer object class is instantiated from the main program Ingest Server. It sets up as a server
and listens for incoming RPCs. It provides a single point of entry to the Ingest Subsystem for all
ingest interfaces. When the external data source invokes the CreateSession() RPC, an Ingest
Session is established and linked with the external data source by the Ingest Server. The InServer
object class is responsible for managing all ingest sessions processing under the server (i.e.,
keeping track of sessions by adding the session to its list when a new session is created and deleting
the session from its list when the session is terminated). A single session is created for a given
client. Upon termination of the InSession, the InServer deletes the associated session and client
information from its list. The InServer object class will be configured as a standalone program
initiated at system startup on the Ingest Client HWCI.

The InSession process is invoked by the CreateSession RPC of the InServerExtRPC object class.
The InSession object class is instantiated from within the process, after which the session is setup
as a server and listens for incoming RPCs from its client. The responsibility of the InSession object
class consist of 1) managing multiple requests from a single client, where each request corresponds
to a DAN message (RPC) with unique DAN sequence number, 2) creating the InRequest object
class for each request and add to the InRequestList to be ingested (InRequest and InRequestList
are object classes of the Ingest Request Processing CSC; refer to Ingest Request Processing CSC
for detail), 3) cleaning up the request information upon receipt of the DDA message (RPC) , 4)
sending the outgoing message to the client, and 5) terminating the connection with the client upon
completion of all requests. In addition, the object class provides services to suspend, resume, and
terminate a session. The InSession object class will be configured as a standalone program
initiated by the InServer object class when the InServer receives the CreateSession RPC.

Table 4.5-2 shows the two object classes defined that are derived from the InSession object class;
InPollingIngestSession and InGUISession. Refer to the corresponding CSC for additional details
on the derived object classes:

Table 4.5-2. InSession Derived Object Classes

The Ingest Session Manager CSC supports the Automated Network Ingest Interface which
provides external interface with the capability to ingest data in an automated fashion by means of
network data transfer into the ECS system. The ingest process is initiated based on a stimulus
provided by a DAN from the external interface. The TSDIS, Landsat-7, SDPF, and SCF interfaces
are candidates for the use of the Automated Network Ingest Interface. This CSC corresponds to

Derived Object Class Corresponding Ingest Client CSC

InPollingIngestSession Polling Ingest Session Manager

InGUISession User Network Ingest Interface and Operator Interface

4-123 305-CD-009-001

the "Ingest Clients for each External Interface" CSC described in the SDPS System Design
Specification.Figure 4.5-2 shows the public services provided by the object classes of the Ingest
Session Manager CSC.

Figure 4.5-2. Ingest Session Manager CSC

4.5.2 Polling Ingest Client Interface CSC

The Polling Ingest Session CSC provides ECS with the capability to ingest data from data centers
with little or no handshaking. The CSC is comprised of the InSession and InPollingIngestSession
object classes. This CSC corresponds to the "Ingest Clients for each External Interface" CSC
described in the SDPS System Design Specification. Figure 4.5-3 provides a pictorial overview of
the Ingest Polling processing.

ECS
Gateway

Send Message
(Authen Request,

DAN, or DDA)
via

Socket Service

External
Data Source

InServer

InSession

Retrun Message
(Authen Response,

DAA, or DDN)
via

Socket Service

If Message = Authen Req,
call CreateSession RPC

Create a New Session
and pass in UUID assigned
by Gateway

NOTE:
All subsequent messages will
be communicated between
Gateway and InSession

Send DAN
message via RPC

Return DAA
message via RPC

2

1

Send DDA
message via RPC

Return DDN
message via RPC

3

64

5

Proxy client for
CreateSession,
DAN and DDA
RPC services

Proxy client for
DAA and DDN
RPC services

Server for
DAN and DDA
RPC services

Server for
DAA and DDN
RPC Services

Server for
CreateSession
RPC Service

Socket Service
Interface

= External

= Standalone
 Process

4-124 305-CD-009-001

The responsibilities of the InSession Object Class consist of 1) creating the proper polling request,
2) detecting new files of interest at a tunable period of time in an external or local disk location, 3)
creating the InRequest Object Class (a component of the Ingest Processing CSC (refer to Ingest
Processing CSC for ingest details), 4) adding requests to the InRequestList Object Class, and 5)
reporting the status of its ongoing ingest requests

InSession is the base object class of InPollingIngestSession; and therefore the
InPollingIngestSession object class inherits all the data and service members from the InSession
Object Class. The NESDIS, GSFC Data Assimilation Office (DAO), and EDOS interfaces are
candidates for using the polling ingest protocol. The InPollingIngestSession (Files) Scenario
addresses the NESDIS and DAO interface, while the InPollingIngestSession (Delivery Record)
Scenario addresses the EDOS interface. The InPollingIngestSession (Delivery Record) Scenario
proposes that the Ingest Subsystem detect and read information contained in a delivery record on
a local ECS resource. The InPollingIngestSession (Files) Scenario proposes that the Ingest
Subsystem detect and read information contained in a remote directory. The functionality to
initiate both scenarios is contained in the Polling Ingest Session CSC.

4.5.3 Ingest Request Processing CSC

The Ingest Request Processing CSC is the core component of the Ingest Subsystem. It manages
the ingest request traffic and the processing of the ingest requests. The CSC provides the capability
to process multiple ingest requests concurrently. The CSC is responsible for tracking the ingest
requests and coordinating the ingest processing, which is comprised of transferring data,
performing data preprocessing, and sending an insertion request to the appropriate Data Server.
The CSC is composed of InRequestList, InRequest, InRequest_C, InRequest_S, InRequestHeader,
InRequestData, InRequestFile, InThreshold, InSystemThreshold, InExternalDataProvider,
InRequestManager, InRequestManager_C, and InRequestManager_S object classes. This CSC is
a new CSC not described in the SDPS System Design Specification.

The IngestRequestProcessing CSC follows the object factory model approach. In the factory
model a "factory object" is established to create other objects based on a client request. The factory
object provides a client and server component. For the Ingest Processing CSC the factory object
is InRequestManager_S, which operates as a "server". The client proxy object is
InRequestManager_C. It is linked with the "client". InRequestManager_S creates InRequest_S
objects. The InRequest_S object handles all subsequent data preparation and insertion into the
Data Server. Once InRequest_S objects are created, they communicated with their client
counterparts, InRequest_C. Figure 4.5-4 shows the interaction of the generic object classes
involved in the Ingest Request Processing CSC.

At system startup, the CSC is configured as a standalone program, with only InRequestManager_S
instantiated, on the Ingest Client HWCI. The InRequest_C and InRequestManager_C objects are
instantiated as client proxies (within the InSession object class or a subclass) when a new request
is to be submitted. InRequest_C is invoked by the client (InSession) to create a new request.
InRequest_C invokes the CreateRequest service of InRequestManager_C (step 1 in Figure 4.5-1).
InRequestManager_C invokes an RPC call to InRequestManager_S (step 2), which creates
InRequest_S in a separate pthread (step 3). One pthread is created for each InRequest_S object.
The distributed object reference (OID) for InRequest_S is returned to the client proxy.
InRequest_C handles subsequent communications with InRequest_S (step 4). In particular,

4-125 305-CD-009-001

InRequest_C invokes the SubmitRequest service of InRequest_S to trigger subsequent data
transfer, preprocessing, and insert into the Data Server. InRequest_C waits for the return of status
upon completion of the data insertion.

The client (InSession) checkpoints persistent context information about the OODCE connections
established above. In the event of a failure of the client, the OODCE context information is used
to reestablish the connection and receive return status.

Figure 4.5-3. Ingest Polling CSC

The InRequest_S object attributes (including OODCE context information) are checkpointed in a
DBMS. Similarly, the InRequestList object contains a list of all the ingest requests that are
currently ongoing or waiting to be processed. The InRequestList object attributes are checkpointed
in a DBMS. In the event of a failure in InRequestManager_S or in InRequest_S, the
InRequestManager_S object (after process restart, if needed) restores all ongoing requests using
information checkpointed for InRequestList. Each InRequest_S object subsequently restores its
contents, including OODCE context, from the checkpointed information.

External

Data Source

InPollingSession

InRequest

4

1

Disk
Space
Area

Put Data Files

Set timer to
check files

2

Check for files,
if NOT found, goto 1.3

Submit Request
for processing

Cleanup Directory and
goto 1.

6

5

Notify
completion
via RPC

= External

= Standalone
 Process

4-126 305-CD-009-001

The InRequest_S object contains information needed to start ingest processing for the request. The
InRequest_S object invokes the Data Transfer and Data Preprocessing CSCs as libraries to perform
ingest processing. The InRequest_S object stores the state (i.e., "active" or "completed") of the
ingest request and the state (i.e., "not transferred", "transferred", "submitted to Data Server", and
"Data Server insertion complete") of each data granule specified in the request. In addition, the
InRequest_S object checks the integrity of the incoming ingest request by ensuring that all fields
of the requests are properly filled. InRequest_S assigns an unique identifier (the distributed object
reference) for the request.

4.5.4 Ingest Data Transfer CSC

The Ingest Data Transfer CSC provides services to the Ingest Client CSCI to facilitate transfer of
data files into the Ingest Subsystem (on a file by file basis or bulk transfer), to collect information
on individual ingested files, build lists of files to be ingested, and group files with valid data types.
This collective set of services within the Ingest Data Transfer CSC is provided by the
InDataTransferTask, InTransferredData, and InFile object classes. The CSC is configured as a
standalone program initiated by the Ingest Request Processing CSC for every set of data granules
to be transferred as supplied by the Ingest Request Processing CSC. This CSC is a new CSC not
described in the SDPS System Design Specification.

The InDataTransferTask Object Class manages data transfer associated with a specific ingest
request. The InDataTransferTask Class provides services to instantiate files, invoke data transfers
(file by file or bulk), maintain retry thresholds, and allocate storage space via the InResourceIF
Object Class.

The InTransferredData Object Class provides services to obtain file information on files associated
with a specific transfer and to group a list of files with valid data types. This object class will
provide services to the InDataTransferTask Object Class to obtain data type information.

The InResourceIF Object Class serves as the interface to the resource/device services by which the
Data Server Subsystem provides. The Object class interfaces with the Storage Resource
Management and the Data Distribution CSCIs of the Data Server Subsystem to perform these
services. Refer to the Data Server volume for details.

The InFile Object Class provides services to instantiate ingested files on available storage space by
collaborating with InResourceIFobject class services and perform necessary file checks.

4-127 305-CD-009-001

 Figure 4.5-4. Ingest Request Processing CSC

4.5.5 Ingest Data Preprocessing CSC

The Ingest Data Preprocessing CSC provides services to perform required preprocessing of data
and subsequent insertion of the data into the appropriate Data Server. The preprocessing of data
consists of converting the data (if needed), extracting the metadata into the standard ECS metadata
format (if needed), performing required metadata existence and parameter range checks, and
updating the metadata with ingest specific metadata (e.g., start and stop date/time for ingest). In
addition, the CSC is responsible for updating the request state, tracked by the Ingest Request
Processing CSC, whenever its state changes; and accepting request cancellation, suspension, and
resumption requests from the Ingest Request Processing CSC. This CSC corresponds to the
"Translation Tools" and "Data Compression/ Decompression Tools" CSCs described in the SDPS
System Design Specification.

The CSC depends on templates and configuration files to maintain data/file type policy and source/
target format information. These templates and configuration files supply necessary information
to other classes within the CSC in order to perform the required preprocessing for a specific data
type granule. The configuration files specify the input format and target format for specific data/
file types. Preprocessing classes rely on these files to specify how an ingested file is organized
upon arrival (source metadata configuration file), and how the data should be organized before
insertion (target metadata configuration file) into the data server. Most importantly, configuration
files can be modified with no software recompilation or modification within the ingest
preprocessing CSC. Source metadata configuration file modifications can be executed through an
administration GUI. Target metadata configuration files are supplied by the Data Server
Subsystem.

InRequest
Manager_S

InRequest_S

“object factory”

InSession

[standalone
process]

[standalone
process]

[pthread]

(This pthread executes all subsequent
data transfer, preprocessing and insertion
into the Data Server.)

1

2

3

4

InRequest
Manager_C

InRequest_C

4-128 305-CD-009-001

Each data type may consist of different file types (e.g., metadata, science, calibration). The
constituents of each data type are defined in a data type template. This template has a record for
each ingest data type specifying the file types that make up the data type. In addition, each file type
has unique characteristics. For instance, each different file type uses different metadata
configuration files. This type of information is contained in a file type template. These templates
may be modified via an administration GUI. New entries (types) can be added to each of the
templates without recompilation or modification within the preprocessing CSC.

The utilization of configuration files and templates and their interaction with preprocessing
processes is illustrated in Figure 4.5-5, "Ingest Preprocessing CSC Data Flow". The preprocessing
control library obtains information from the templates to determine which preprocessing tools are
required (for a specific data/file type) and what the necesssary inputs are for the chosen tools (1).
With the acquired information, preprocessing control can invoke the appropriate preprocessing
tools (2). The configuration files aid the preprocessing tools in determining how the ingested input
data is organized and the target format of the data (3). The preprocessing tools provide the
functionality to obtain the values of required parameters directly from the ingested files (4). The
preprocessing tools transform the ingested files into final products (5). Upon completion of
preprocessing, a list of files is presented to the Data Server Subsystem for subsequent data archival
(6).

The Ingest Preprocessing Object Model (presented in section 4.4) provides an object oriented view
of the CSC. This object model presents preprocessing unique classes, as well as classes from other
CSCs or subystems. Therefore, an understanding of the Preprocessing CSC and its interaction with
external classes can be viewed in one continuous model. The Ingest Data Preprocessing CSC is
composed of the InDataPreprocessTask, InDataType, InMetadata (and its subclasses),
InScienceData (and its subclasses) , InDataTypeTemplate, InFileTypeTemplate, InSourceMCF,
InDataPreprocessList, InMetadataTool, and InDataServerInsertionTask object classes. Each class
is described in detail in the Preprocessing CSC data dictionary and their respective roles are
illustrated in the detailed preprocessing scenario (Table 4.4-10). However, a general understanding
of the object model can be gained by flowing through the following high level object-oriented
scenario.

A "preprocessing task" is initiated when the InDataPreprocessTask Class is instantiated by the
Ingest Request Processing CSC. As a result, the InDataPreprocessTask class invokes the
preprocessing service of the InDataType Class to initiate preprocessing upon a set of files
associated with a given data type (on a per granule basis). This set of files are contained in an
InDataPreprocessList object. The InDataType Class utilizes the file list and data type argument to
access data/file type specific information from the InDataTypeTemplate and InFileTypeTemplate
classes. The acquired information is used to properly instantiate the appropriate data type
subclasses (i.e., InPVMetadata). The instantiated data type subclasses then interact with other
classes (i.e., InSourceMCF, DsCIDescriptor, InMetadataTool) to produce final products before
insertion into the Data Server Subsystem. The InSourceMCF class provides information on a data
type basis on how to retrieve applicable parameter values (e.g., the location of parameter, computer
data type). The DsCIDescriptor is a data server class which provides services to acquire a target
metadata configuration file and validate metadata. The InMetadataTool Class provides services to
read target metadata configuration files and write PVL metadata files. After completion of the
preprocessing task, the InDataServer InsertionTask Class interacts with the Data Server Subystem

4-129 305-CD-009-001

(DsCIESDTReferenceCollector, DsCIRequest, DsCICommand) to insert the preprocessed data
files. Detailed scenarios illustrating interactions between all classes are provided later in this
section. With the basic concept of operations in place, the design principles used to develop the
object models and individual classes are presented in the following paragraphs.

The Ingest Subsystem will receive data from a variety of external sources and instruments as
illustrated previously in Figure 3.1-1. This variety of instruments and sources produce data types
which have different file formats (e.g., HDF, SFDU, GRIB), data formats, metadata parameters,
and data organizations (e.g., separate file for metadata vs. embedded metadata). This diverse set of
ingest data types necessitates different implementations of preprocessing services based on each
individual data type or set of data types. For instance, the implementation of conversion services
requires different algorithms for data types which possess different initial and/or target formats. In
addition, each ingest data type may make use different preprocessing services. For instance, some
data types require metadata extraction (e.g., CERES L0 Data, NMC GRIB data), while other data
types may provide a separate file which contains only metadata (e.g., TOMS Gridded Ozone,
AVHRR Monthly GVI). Therefore, the first major design goal for the Ingest Preprocessing CSC
is to provide the capability to preprocess this diverse set of data types efficiently and adequately.
The tailoring of preprocessing services to address this diverse set of data types is done by
specializing the data type base classes, InMetadata and InScienceData.

Figure 4.5-5. Ingest Preprocessing CSC Data Flow

Data
Server

Preprocessing
Tools

Inges ted
Files

Preprocessed
Files

Templates

Configuration
Files

Administration
GUI

Data Type Pol icy
File Type Characteristics

Source Configuration
Target Configuration

Tool Choice
Tool Inputs

Reformatted/Çonverted Data
PVL Metadata

Raw Metadata
Raw Sc ience

List of preprocessed fi les

1

2

3

4

5

6
Data
Inputs

Data
Inputs

Preprocessing
Control

Key:

Data Preprocessing
Steps
Pre- Data Arrival S teps

Files/Database

Library

External CSC/Subsystem

4-130 305-CD-009-001

The level of specialization for these data type base classes is limited by the second major design
goal, eliminating redundancy. The data type subclasses are designed to address groups of data
types (where possible) versus a subclass for each data type. If the data types within each group are
similar, the services within these subclasses can be tailored to properly preprocess the individual
data types through the arguments of the called services. The values of these arguments, for a
specific data type, are obtained through the InFileTemplate and InDataTypeTemplate Classes.
These "Template" Classes contain information on how to preprocess each specific data type/file
type. Part of the information contained in these classes also defines the argument values (dependent
on data type) for subsequent use of data type subclass services.

For example, the InPVMetadataClass is a specialization of the InMetadata Class which contains
the appropriate preprocessing service for parameter-value metadata. For different data types within
this group (parameter-value metadata), different delimiters may be used to separate a parameter
from a value. The delimiter for each specific data/file type is defined in the InFileTemplateClass.
This information is passed to the InPVMetadataClass upon instantiation. The InPVMetadataClass
services will utilize the input arguments to define the appropriate delimiter for a specific service.
Whether the delimiter is a semicolon or equal sign does not effect the design of the service.
However, it does effect the execution of the service and the resultant product. The delimiter may
differ with each data type and therefore must be defined in the input arguments of the service.

This design also helps fulfill the third major design goal, flexibility and extensibility. The CSC is
flexible, since modification of existing data types will be feasible. For example, changes in input
metadata structure or required metadata output structure are driven by the metadata configuration
files. The Data Server subsystem will provide services to access "target" metadata configuration
files. These files will dictate the metadata requirements for each data type. Through an iterative
process, the preprocessing CSC will retrieve the input values from the input metadata file(s). The
InSourceMCF class, provides correlation between the target parameter names in the target
metadata configuration file with access information on the input metadata file. The InDataType,
InMetadata, InScienceData, and InMetadataTool classes utilize these metadata configuration files
to produce final products.

The Ingest Preprocessing classes defining data type (InDataTypeTemplate), file type
(InFileTypeTemplate), and metadata configuration (InSourcMCF) will interact with an
administration GUI (InTemplateEditor, described in Section 4.5.6, Operator Interface CSC). This
will enable operator initiated instantiations of new InFileTypeTemplate, InDataTypeTemplate,
InSourceMCF objects to address new data types. The InFileTypeTemplate and
InDataTypeTemplate classes within the Ingest Data Preprocessing CSC, will guide the
InDataType Class through preprocessing and supplying the necessary information to properly and
correctly instantiate the data type subclasses.

The system is extensible, since new data types may be added without major design change. Not
only does the basic design often not have to change to accommodate new data types, but some of
the preprocessing subclasses may be used for future data types. The implementation of broad
based specializations, provides a greater probability that a new data type will fit into an existing
data group versus creating a new class for that data type. In addition, the design of these subclasses
are a result of Release A and B data sets analysis. Therefore, a Release B data type may fall into
one the Release A data groups and require only minimal additional coding. The input arguments
would be different (requiring new instances of the "Template" classes; these new instances are

4-131 305-CD-009-001

created via the InTemplateEditor class) and drive the specialization to properly process the data
type correctly. For instance, a Release B data set with Parameter Value metadata can use the
services of the existing InPVMetadata Class. A new InFileTypeMetadata object may be created to
represent this new data type. It is important to note that not all Release B data types will fit into
one of the existing specializations and new data type subclasses will have to be developed in some
cases.

The following paragraphs will discuss general preprocessing requirements and how each
requirement applies to some of the ingest data types listed in the tables. Table 4.5-3 summarizes
ECS data type/set preprocessing requirements for all Release A data types. Items marked as TBR
are to be resolved post-Release A CDR with the data providers and processing teams. Release B
data type preprocessing requirements will be presented in Release B IDR documentation.

Table 4.5-3. Release-A Ingest Data Type Preprocessing Requirements (1 of 2)

Data Set(s) File Format Convert Reformat Field/Range
Checking

Metadata
Extraction

CERES Level
0 Data

SFDU No No Yes Yes

LIS Level 0
Data

SFDU No No Yes Yes

TRMM H/K
Data

SFDU No No Yes Yes

TRMM Orbit
Data

SFDU TBR No Yes Yes

LIS SCF Con-
stants and Co-
efficients

Binary/ASCII No No TBR TBR

CERES SCF
Constants and
Coefficients

Native/HDF No No TBR TBR

CERES SCF
Generated An-
cillary Data
Files

Native/HDF No No TBR TBR

TSDIS Level
1a Data

SFDU No No Yes TBR

TSDIS Level
1b-3b Data

HDF No No Yes TBR

NMC-MRF GRIB Yes - to HDF Yes Yes Yes

NMC-ETA GRIB Yes - to HDF Yes Yes Yes

NMC-FNL GRIB Yes - to HDF Yes Yes Yes

GPCP Data Native No No Yes TBR

GPI Data Native No No Yes TBR

4-132 305-CD-009-001

Metadata Extraction: The necessity for metadata extraction depends on each individual data
type. Landsat 7 Level 0R data does not require metadata extraction since a separate Landsat 7
metadata file is provided. NMC GRIB data requires metadata extraction since the metadata and
science data are provided within one physical data file. SDPF Level 0 data provides some metadata
in a separate file (Detached SFDU Header) while other metadata (Data Set File Header(s)) are
embedded within the science data set file. TSDIS HDF metadata is contained in an separate HDF
object from the TSDIS science data. HDF tools will extract the metadata objects from the TSDIS
HDF files. TSDIS SFDU metadata is orgainized in a similar format to the SDPF metadata. The
necessity for extraction and information, related to where the metadata resides within a physical
file, can be found in the appropriate InSourceMCF and InFileTypeTemplate objects.

Data Set(s) File Format Convert Reformat Field/Range
Checking

Metadata
Extraction

AVHRR Global
Analyzed Field

Binary Direct Access I/
O

No No Yes Yes

Snow/Ice Cov-
er (EDR)

Intermediate Database Yes Yes Yes Yes

AVHRR
Monthly Gen-
eral Vegeta-
tion Index

Binary Raster Data No No Yes No

AVHRR Level
1b

TBR No No TBR TBR

Digital Eleva-
tion Map

TBR No No TBR TBR

Surface Map
of Water Con-
ditions

TBR No No TBR TBR

Surface Map
of Vegetation

TBR No No TBR TBR

TOMS Grid-
ded Ozone

HDF No No Yes No

SAGE-II
Stratospheric
Optical Depth

HDF No No No No metadata
exists

SAGE-II
Stratospheric
Ozone

HDF No No No No metadata
exists

ISSCP
DX,D1,D2 ra-
diances

TBR No No TBR TBR

SSM/I Level
1b

TBR No No TBR TBR

POAM-II Thin
Stratospheric
Optical Depth

TBR No No TBR TBR

Table 4.5-3. Release-A Ingest Data Type Preprocessing Requirements (2 of 2)

4-133 305-CD-009-001

Conversion: The implementation of conversion services will depend on the initial format of the
data type and the targeted archive format. Currently, the three main ingest formats which have been
identified for ECS Release A ingest are the: Standard Format Data Unit (SFDU), Hierarchical Data
Format (HDF), and Gridded Binary (GRIB). Since HDF is a standard archive format, data
conversion from HDF to other formats during the ingest process is not foreseen. SDPF SFDUs
(CERES and LIS) will not be converted since the instrument teams will prepare algorithms to
process SFDUs as is. TSDIS Level 1A will remain in SFDU format since the TSDIS and ESDIS
Projects have jointly determined that it is not efficient or necessary to convert this data to HDF.
The lack of efficiency stems from processing complexities with converting TSDIS Level 1A SFDU
data into HDF. The lack of necessity is due to TSDIS Level 1A data not being widely distributed
to the User community, and therefore a common format such as HDF for this data is not imperative.

An analysis of external ancillary data sets required by the instrument teams has been performed.
The result of this analysis was a project directive mandating that only datasets and/or formats
required by multiple teams are to be considered for the development of ancillary data reformatting
and conversion capabilities. NMC GRIB data, SSM/I snow and ice products, and TOMS products
meet this criteria and therefore will be reformatted and converted as needed. NMC GRIB data will
require data conversion to HDF-EOS. The detailed design for the NMC GRIB conversion is in
progress and will be reported upon post-Release A CDR. Depending on which TOMS product is
requried by the CERES instrument there may be TOMS data preprocessing. TOMS Gridded Data
is already exists in HDF, while TOMS High Density data will require conversion to HDF-EOS.
SSM/I snow and ice products are currently being analyzed. Other CERES ancillary data, GPI,
GPCP data will not be converted.

Reformatting: The Ingest Preprocessing CSC will perform reformatting to alleviate
inconsistencies in data representations from different external computer systems (e.g., data type
definitions, byte ordering, and character representation). HDF data does not have to be reformatted
since HDF is a portable file format. An HDF file created on one computer system can be easily
read on another computer system without modification. SFDU data will not be reformatted since
the data is defined in a byte by byte format. GRIB, SSM/I Snow and Ice Cover, and TOMS data
will be reformatted as part of the conversion process.

Metadata Checking: Metadata checking will be performed to verify that certain metadata fields
exist in the correct form and that the value of certain fields are within limits. The extent of metadata
checking will depend on each data type. The Preprocessing CSC performs some or all of the
following field and range checks for metadata on a ingest data type by data type basis:

a. Field Checking. Verifies all required metadata parameters exist and that the metadata
parameters use correct syntax.

ECS has defined a set of "core metadata" which will be supplied for ECS products. This
core set of metadata parameters define the minimum metadata which can be supplied for
an ECS product. The core metadata will also dictate a specific format and syntax for each
parameter. Metadata for a specific data type will have the minimum or core set of metadata
and optional metadata data type unique fields. Some data types (e.g., external ancillary
data, Level 0 data, Version 0 data) may not be required to meet these core metadata
requirements. Level 0 data may not be required to contain this core metadata since it will
not be widely accessed by the user community. External ancillary data and V0 migration

4-134 305-CD-009-001

data may have existing metadata standards and heritage metadata. This does not preclude
other subsystems within ECS from generating core metadata for the external ancillary data
sets and V0 migration data sets.

The Preprocessing CSC will determine what the required metadata parameters for a
specific data type through interaction with the Data Server Subsystem. The Data Server
Subsystem supplies a target metadata configuration file dictating the required parameters
for the specified data type. A scenario illustrating the full metadata field checking process
is included in Table 4.4-10.

b. Range Checking. Verifies for selected metadata parameters, that parameter values lie within
a specified range or that the parameters are within a set of discrete values (valid options).
The purpose of range checking is not to flag values that may have relevant scientific values
outside the normal range of values but to flag fields with values outside of possible range
limits or not in a set of possible discrete options. Default values for some selected metadata
fields may be inserted when a value is missing.

The Preprocessing CSC will rely on the Data Server Subystem for validation of metadata
files. The Preprocessing CSC will first convert the input metadata into a final PVL
metadata file and then utilize data server validation services.

c. Byte Checking: In some cases the metadata provided with a specific science data type will
indicate the size of the science data packet or file. In this case, the InDataPreprocessTask
Class will check that the size of the packet/file is within a certain tolerance.

d. Time Range Checks: Time information in metadata will be checked and translated to the
ECS standard format as necessary.

Ingest Unique Metadata: All data types will have ingest unique metadata appended to their
original metadata. This ingest unique metadata consists of time of ingest and a quality flag.

4.5.6 Operator Ingest Interface CSC

The Operator Interface CSC provides operations personnel with the capability, via the GUI
Interface, to perform physical media ingest; to monitor the ingest history log; to monitor the status
of ongoing ingest requests; to update (i.e., cancel, suspend, resume, and change priority) an ingest
request; and to set the ingest thresholds. The thresholds consist of: number of ingest requests to be
processed concurrently, maximum data volume to be ingested concurrently, Ingest polling timer,
and number of data transfer retries. The CSC is comprised of the GUI Interface and the
InGUISession, InMediaIngest, InStatusMonitor, InLogMonitor, InRequestController,
InThreshold, and InThresholdController object classes. The CSC is initiated as a set of GUI
screens with associated software to process GUI input when authorized operations personnel select
any of the defined operator service options from the GUI screens. This CSC corresponds to the
"Ingest Subsystem Administration Application" CSC described in the SDPS System Design
Specification. The Operator GUI Interface contains different screens associated with each operator
task. From the GUI screen, the operations personnel select the desired task to be processed and
enter the information needed for building the request for the task. The GUI Interface makes sure
that all the required fields are properly filled by the operations personnel. If all required fields are
indeed properly filled, the GUI Interface invokes the appropriate services provided by this CSC to
fulfill the task.

4-135 305-CD-009-001

The InMediaIngest, InLogMonitor, InStatusMonitor, and InRequestController object classes are
derived from the InGUISession objects class. This means that all of these object classes inherit
the data and service members from the InGUISession object class.

The InMediaIngest object class provides services to perform physical media ingest. The object
class performs privilege check on both the operations personnel and the media provider. The
object class interface with the operations personnel via the GUI Interface.

The InLogMonitor object class provides services to monitor Ingest History Log (an alias for Data
Receipt Log). The service allows the operations personnel to specify the search criteria for the
Ingest History Log entries for viewing based on 1) ingest start/stop date and time, 2) data provider
ID, 3) data set name, and 4) final request status. The InLogMonitor object class is responsible for
gathering the search criteria information input by the operations personnel via the GUI Interface
and interfaces with the InHistoryLog object class to display the Ingest History Log. The
InHistoryLog object class is defined in the Ingest Administration Data CSC; refer to that CSC for
details.

The InStatusMonitor object class provides service to monitor the ongoing ingest requests.
Authorized operations personnel are allowed to view all or selective ingest requests in the system,
whereas a less privileged user can view only the requests that are owned by the individual. The
service allows the operations personnel to select Ingest Requests for monitoring based on: 1) data
provider ID, 2) ingest request ID, and 3) request state. The object class is responsible for gathering
the search criteria information provided by the operations personnel via the GUI Interface and
interfaces with the InRequestList to locate the InRequest object class for getting the results. Refer
to the Ingest Request Processing CSC for details on the two object classes.

The InRequestController object class provides service to update an ongoing ingest request. The
updates include change priority, cancel, suspend, and resume. Only the cancel service is supported
at Release A. The object class is responsible for reading in from the operations personnel the
update specification (e.g. change priority, cancel) and the request to which the update is to be
performed on. It also interfaces with the InRequestList object class to locate the request on which
the update is to be performed. Refer to Ingest Request Processing CSC for details on the two object
classes.

The InThreshold object class provides services for viewing and updating the values of ingest
thresholds. These thresholds consist of the number of ingest requests allowed to be processed
concurrently, the volume of data to be ingested concurrently, and the number of data transfer
retries.

The InThresholdController object class provides services to set and to view ingest thresholds. The
ingest thresholds consist of the number of ingest request to be processed concurrently, maximum
data volume to be ingested concurrently, and the number of data transfer retry attempts.

Figures 4.5-6, 4.5-7, and 4.5-8 provide a pictorial overiew of the Media Ingest, the Administrative
Viewing, and the Request Cancellation processing respectively. The Administrative Viewing
diagram (Figure 4.5-7) describes History Log Monitoring and Request Status Monitoring GUI
interfaces in a very generic fashion because of the similarity in their processing--both interface
accesses the Ingest DBMS to generate a report for display based on the entries queried from the
database.

4-136 305-CD-009-001

Figure 4.5-6. Media Ingest CSC

InMediaIngest

InServer

InSession

Call CreateSession RPC
to request for a session

Create a New Session
and pass in UUID assigned
by Gateway

NOTE:
All subsequent messages will
be communicated between
Gateway and InSession

Send DAN
message via RPC

Return DAA
message via RPC

31

Send DDA
message via RPC

Return DDN
message via RPC

4

10

5

6

Proxy client for
CreateSession,
DAN and DDA
RPC services

Proxy client for
DAA and DDN
RPC services

Server for
DAN and DDA
RPC services

Server for
DAA and DDN
RPC Services

Server for
CreateSession
RPC Service

Media Ingest is
selected

Display req.
 accepted7

8

9 Display
completion status

InResourceIF

2

Download
files from
Media

= Standalone
 Process

= Library

4-137 305-CD-009-001

Figure 4.5-7. Administrative Viewing CSC

InGUISession

1

Accept Ingest Admin.
 monitoring request

Format and display results

3

Query the entry
from DB

=

Standalone
 Process

=

Library

Ingest
DBMS

InRequestList

 Search for request(s) based
 on specified criteria

2

4

4-138 305-CD-009-001

Figure 4.5-8. Request Cancellation CSC

4.5.7 User Network Ingest Interface CSC

The User Network Ingest Interface CSC provides ECS science users with the capability to
interactively request network ingest data into the ECS system and to get the status of an ongoing
ingest request previously sent by the user. The CSC is composed of GUI Interface; and the
InGUISession, InNetworkIngest, and InStatusMonitor object classes. The CSC is initiated as a set
of GUI screens with associated software to process GUI input when the user selects the User
Network Ingest option from the GUI screens. This CSC corresponds to the "Ingest Preparation
Toolkit" CSC described in the SDPS System Design Specification.

Figure 4.5-9 provides an pictorial overview of the User Network Ingest processing. The diagram
clearly depicts how a user would ingest data files into the ECS system using HyperText Markup
Language (HTML). One thing to be aware of is that before invoking the Ingest Form Script
defined in InNetworkIngest object, the fields in the Request Form will be parsed by the HTTP
daemon. Upon invocation, the Ingest Form Script will package the Request Form fields into a
DAN message and sends the message to ECS Ingest for processing.

InGUISession

1

Accept Ingest Request
 Cancellation request

5A

Display completion status

3

Query the entry
from DB

= Standalone
 Process

= Library

Ingest
DBMS

InRequestList

 Search for request based
 on specified criteria

2

InData
Transfer InData

Preprocessing
InData

Insertion

InReques

Invoke CANCEL
service to perform
request control

Invoke CancelTransfer
service if req. is in
Transferring state Invoke CancelPre-

process service if req.
is in Preprocess state

Invoke CancelInsert
service if req. is in
Insertion state

5B

5C

4
6

= Pthread

4-139 305-CD-009-001

The GUI Interface consists of screen(s) associated with the science user task which allows users to
interactively fill in information needed for building the network ingest request or the status monitor
request. The GUI Interface makes sure that all the required fields are properly filled by the user. If
all required fields are properly filled, the GUI Interface invokes the appropriate services provided
by the InNetworkIngest or the InStatusMonitor object class to fulfill the request.

The InNetworkIngest and InStatusMonitor object classes are derived from the InGUISession
object class. This means that these object classes inherit all the data and service members from the
InGUISession object class. The InGUISession object class is defined in the Operator Ingest
Interface CSC; refer to the Operator Ingest Interface CSC for details. The InNetworkIngest object
class provides services for the user to interactively request ingest of product and document data
into the ECS system and to save the contents of the interactively entered network ingest request to
a file. The object class is setup to read in the Interactive Network Ingest Request from the user via
the User GUI Interface. The InStatusMonitor object class provides services for user to view the
state of the user ongoing ingest request(s). The user is authorized to view only the requests that are
owned/submitted by the user. The InStatusMonitor object class is defined in the Operator Interface
CSC; refer to the Operator Interface CSC for details.

Figure 4.5-9. User Network Ingest CSC

Ingest Form
Script

InServer

InSession

Call CreateSession RPC
to request for a session

Send DAN
message via RPC

Return DAA
message via RPC

5

2

Send DDA
message via RPC

Return DDN
message via RPC

6

12
7

8

Proxy client for
CreateSession,
DAN and DDA
RPC services

Proxy client for
DAA and DDN
RPC services

Server for
DAN and DDA
RPC services

Server for
DAA and DDN
RPC Services

Server for
CreateSession

RPC Service

User retrieve Ingest
Request FORM via http

User submits the
completed Form via
http

3

10

11

Display completion status

4

User ftp’d data files to ECS

= Standalone
 Process

= External CSC

Disk
Space
Area

1

Invoke the
Ingest Form
Script

Display req. Accepted

9

HTTP
daemon

Create a New
Session and
passs in UUID

NOTE:
All subsequent msg(s)
will be communicated
between Ingest Form
Script and InSession

4-140 305-CD-009-001

4.5.8 Ingest DBMS CSC

The Ingest DBMS CSC is responsible for storing and providing access to Ingest Subsystem
internal data. The CSC is composed of an OTS Data Base Management System (DBMS) . In
particular, the DBMS stores the Ingest operations data bases -- Ingest History Logs and Ingest
configuration and template information. Those data bases are configured in the Ingest
Administration Data CSC, which is described in the following paragraph. This CSC corresponds
to the "Subsystem Administration DBMS" CSC described in the SDPS System Design
Specification.

4.5.9 Ingest Administration Data CSC

The Ingest Administration Data CSC table descriptions of administrative information for the Ingest
operations data bases are maintained by the Ingest DBMS. The Ingest operations data bases are
described at a high level in section 4.6.1.4 and at a more detailed level in the object model in
Section 4.3. The CSC interfaces with MSS to allow generation of production reports. Refer to
Section 4.6.3 for a description of proposed production reports and to the MSS volume of this
document for a description of associated MSS event logs.

4.5.10 Peripherals CSC

The Peripherals CSC described in the SDPS System Design Specification is entirely reused from
the Peripherals CSC software described in the Data Server Subsystem volume of this document.
That CSC provides common access of the Distribution and Ingest Peripheral Management HWCI
(DIPHW, as described in volume 9 of this document) for ingest and distribution purposes. The
Peripherals CSC is configured on the DIPHW CSCI.

4.5.11 Viewing Tools CSC

The Viewing Tools CSC described in the SDPS System Design Specification is entirely reused
from the visualization and other client tools described in the Client Subsystem volume of this
document. Viewing capabilities are provided only for ingested data (i.e., only for data already
converted/reformatted into forms accessible by standard ECS viewing tools). Data that is not
converted/reformatted into a form accessible by standard ECS viewing tools are not available for
viewing or other analysis within the Ingest Subsystem. The Viewing Tools CSC is configured on
the Ingest Client HWCI (ICLHW) administration workstation component.

4.5.12 Data Storage Software CSC

The Data Storage Software CSC described in the SDPS System Design Specification is entirely
reused from the CSCs comprising the Science Data Server (SDSRV) CSCI and Storage Resource
Management (STMGT) CSCI described in the Data Server Subsystem volume of this document.
Those CSCs provide for reliable storage and retrieval of the Level 0 (L0) data in the same fashion
as for other data products. No additional Ingest Subsystem software is required to support L0 high-
reliability data storage and subsequent access. The Data Storage Software CSC is configured on
the Ingest Client HWCI (ICLHW) host component for Level 0 data ingest.

4-141 305-CD-009-001

4.5.13 Resource Administration CSC

The Resource Administration Application CSC described in the SDPS System Design
Specification is entirely reused from the administration CSCs comprising the Science Data Server
(SDSRV) CSCI and Storage Resource Management (STMGT) CSCI described in the Data Server
Subsystem volume of this document. Those CSCs provide for operations staff monitoring and
control of storage components. No additional Ingest Subsystem software is required to support L0
high-reliability data storage and subsequent access. The Resource Administration CSC is
configured on the Ingest Client HWCI (ICLHW) administration workstation component for Level
0 data ingest.

4.5.14 Client Interfaces CSC

The client CSC is entirely reused from the Science Data Server (SDSRV) CSCI described in the
Data Server subsystem volume of this document. That CSC provides public objects/services to
perform data granule insertion. The Client CSC is configured on the Ingest Client HWCI
(ICLHW) host component for Level 0 data ingest.

4.6 Ingest CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

4.6.1 System Management Strategy

The Ingest CSCI is designed to provide robust ingest services to external data providers.
Specifically, the design goal of the Ingest CSCI is to always return status (successful or
unsuccessful) for every received ingest request. To accomplish that goal, the Ingest CSCI follows
ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery;

• Ingest operations data bases.

4.6.1.1 Ingest Startup/Shutdown

As described in the MSS volume of this document, MSS provides life-cycle services for system
startup and shutdown. The Ingest subsystem fully uses those services.

At system startup, the Ingest InServer object and the InRequestManager object are instantiated as
standalone processes. In addition, data base tables corresponding to the InRequestProcessHeader,
InRequestSummaryHeader, InRequestProcessData, InRequestSummaryData, and
InRequestFileInfo are set up prior to the initial system startup.

InServer acts as an "object factory". InServer instantiates InSession objects as standalone
processes when a connection is requested by an External Data Provider. One process is created for
each External Data Provider.

4-142 305-CD-009-001

InRequestManager also acts as an "object factory." InRequestManager instantiates InRequest
objects in process threads (pthreads) when a request is created by an InSession object. The
InSession process establishes a client proxy object (InRequest_C) for communicating with the
distributed InRequestManager_C (client) object. The InSession object invokes InRequest_C
(client) services to create an InRequest_S (server) object. InRequestManager_C passes a creation
message to the InRequestManager_S (server) object. The InRequestManager_S object physically
creates the InRequest_S (server) object. One InRequest_S object is created for each InSession
object.

The InRequestManager process instantiates the InRequest objects in separate pthreads. A pointer
to each InRequest_S object is maintained in the InRequestList object, which itself is pointed to by
the InRequestManager_S object. The InDataTransferTask, InDataPreprocessingTask, and
InDataInsertTask objects are all instantiated within the context of the InRequest pthread.

When Ingest processes are started, they check for the existence of checkpointed information. If
such checkpointed information is available, the Ingest processes will restore the information and
continue processing. Note: there is a tunable time limit after which checkpointed information
will not be restored. Additional checkpointing strategy is discussed in section 4.6.1.3.

4.6.1.2 Error Detection and Reporting

As described in the CSS and MSS volumes of this document, CSS and MSS jointly provide event
logging services for logging and reporting errors and faults, and for browsing error/status logs. The
Ingest subsystem fully uses those services. Errors detected in the processing of the InRequest
object are identified in Table 4.6-1, which shows critical errors reported and the actions (including
operations personnel actions) taken.

Table 4.6-1. Ingest Subsystem Error Categories (1 of 3)

Error Category Actions to Be Taken

Metadata Valida-
tion Failure

In general, log errors to the event log and return status to the external data provider.
Operations staff evaluate errors off-line and request re-ingest after corrections.

Dependent on preprocessing templates (instituting DAAC policy), continue with pre-
processing and insertion of data into the data server subystem in a special data type
category, "INCOMPLETE" (with metadata quality set to "UNVALIDATED"). Flag
Metadata indicating that the metadata was not validated. Operator action and source
facility notification required. Log errors to the event log and return status to the ex-
ternal data provider. Operations staff evaluate errors off-line and request re-ingest
as necessary.

Target/Source MCF
Mismatch Failure

Same as above. Operations staff are alerted that preprocessing templates are out-
of-synch. Operations staff develop a trouble ticket to correct the mismatch.

Data Type Policy
Failure:No Metada-
ta

Log errors to the event log and return status to the external data provider. Opera-
tions staff evaluate errors off-line and request re-ingest after corrections.

4-143 305-CD-009-001

Error Category Actions to Be Taken

Data Type Policy
Failure: Incomplete
set of Files, Meta-
data exists

In general, log errors to the event log and return status to the external data provider.
Operations staff evaluate errors off-line and request re-ingest after corrections.

Dependent on preprocessing templates (instituting DAAC policy), continue with pre-
processing and insertion of data into the data server subystem in a special data type
category, "INCOMPLETE" (with metadata quality set to "UNVALIDATED"). Flag
Metadata indicating that the metadata was not validated. Operator action and source
facility notification required. Log errors to the event log and return status to the ex-
ternal data provider. Operations staff evaluate errors off-line and request re-ingest
as necessary.

Data Type Policy
Failure: Unknown
Data Type

Log errors to the event log and return status to the external data provider. Opera-
tions staff evaluate errors off-line and communicate with external data provider.
(Note: all data sets to be ingested must be pre-authorized by DAAC personnel. In-
gest and Data Server setup is required before ingest and archive can occur.)

Data Type Policy
Failure: Unknown
File Type.

Same as above.

File Type Failure In general, log errors to the event log and return status to the external data provider.
Operations staff evaluate errors off-line and request re-ingest after corrections.

Dependent on preprocessing templates (instituting DAAC policy), continue with pre-
processing and insertion of data into the data server subystem in a special data type
category, "INCOMPLETE" (with metadata quality set to "UNVALIDATED"). Flag
Metadata indicating that the metadata was not validated. Operator action and source
facility notification required. Log errors to the event log and return status to the ex-
ternal data provider. Operations staff evaluate errors off-line and request re-ingest
as necessary.

Operations staff are alerted that preprocessing templates are out-of-synch. Opera-
tions staff develop a trouble ticket to correct the mismatch.

Unable to archive
data

Internal Data Server fault. Log errors to the event log and return status to the exter-
nal data provider. Report alert to operations staff. Operations staff evaluate errors
off-line and request re-ingest as necessary. (Note: Data Server will re-vector ingest-
ed data to a different device in the event of a single device failure.)

Unable to read pe-
ripheral media

Internal Data Server fault. Log errors to the event log and return status to the exter-
nal data provider. Report alert to operations staff. Operations staff evaluate errors
off-line and request re-ingest as necessary. (Note: if a peripheral device fails, Data
Server will revector the media to a different peripheral.)

Unable to transmit
data ingest coordi-
nation messages

After a system-tunable number of retries, log errors to the event log. Report alert to
operations staff. Operations staff evaluate errors off-line to evaluate and correct
communications network problems.

Unable to transfer
data to be ingested

After a system-tunable number of retries, log errors to the event log and return status
to the external data provider. Report alert to operations staff. Operations staff eval-
uate errors off-line to evaluate and correct communications network problems.

Table 4.6-1. Ingest Subsystem Error Categories (2 of 3)

4-144 305-CD-009-001

Errors/status may be reported in two error logs. MSS maintains the first log, the MSS event log.
It contains errors/status of interest to operations staff to evaluate system status and to perform trend
analysis. The Ingest subsystem maintains the second log, the Ingest event log. The Ingest event
log contains selected errors/status from the MSS event log (for context) plus highly-detailed debug
events. Software maintenance personnel use the Ingest event log to diagnose system and software
problems in response to trouble tickets.

4.6.1.3 Fault Tolerance and Error Recovery

Once an ingest request is accepted from an External Data Provider, the ECS policy is to complete
request processing and return status (successful or unsuccessful) to the External Data Provider.
Therefore, upon creation of the InServer, InSession, InRequestManager, and InRequest objects,
their critical attributes are checkpointed to a COTS data base. After a process or system failure,
the checkpointed attributes are automatically restored to the last checkpointed state and processing
continues. Note: there is a tunable time limit after which checkpointed information will not be
restored.

Data bases for InServer/InSession, and InRequestManager/InRequest are checkpointed only when
a session or request, respectively, changes its fundamenal state. Any change to state that does not
invoke checkpointing is defined as a "substate."

The InServer object has two fundamental states--"Session Created" and "Session Deleted." The
InServer object is checkpointed after each InSession object is created (storing session ID) and after
each InSession object is deleted (deleting session ID). The InServer object has two substates--
"Active" (at object creation) and "Inactive" (at object deletion) that are not checkpointed.

The InSession object has three fundamental states--"Active", "Request Created", and "Request
Deleted." The InSession object is checkpointed immediately after it is created (storing information
about the connection with the external data provider); after a InRequest object is created (storing
the request ID); and immediately after the InRequest object is deleted (deleting request ID).

The InRequestManager object has two fundamental states--"Request Created" and "Request
Deleted." The InRequestManager object is checkpointed after each InRequest object is created
(storing request ID in the InRequestList object) and after each InRequest object is deleted (deleting
request ID from the list). The InRequestManager object has two substates--"Active" (at object
creation) and "Inactive" (at object deletion)--that are not checkpointed.

Error Category Actions to Be Taken

Unable to allocate
disk space

Unable to allocate working storage space using Data Server STMGT CSCI services.
Log errors to the event log and return status to the external data provider. Report
alert to operations staff. Operations staff evaluate errors off-line and request re-in-
gest as necessary.

Unable to set up ex-
ternal data provider
session

Limit exceeded for allowable number of external data provider sessions. Log errors
to the event log and return status to the external data provider, indicating that the
session connection should be re-attempted later. (Note: based on the modeled
transaction load, this error condition is expected to occur very rarely, if at all.)

Table 4.6-1. Ingest Subsystem Error Categories (3 of 3)

4-145 305-CD-009-001

The InRequest object has three fundamental states--"Active", "Data Submitted for Insertion", and
"Data Inserted". The InRequest object is checkpointed to "Active" when created by
InRequestManager. The InRequest object is subsequently checkpointed when a data granule is
submitted to the Data Server for insertion and when the insertion is complete. The InRequest
object has two substates--"Data Transferred" and "Data Preprocessed"--that are not checkpointed.

Note: therefore, after process or system failures between InRequest creation and submittal of data
granules for insertion in the Data Server, the InRequest object is restored as if no data transfer or
preprocessing had occurred. Temporary files are deleted based on checkpointed file IDs.

Failure scenarios with recovery methods:

1) Failure of the InServer object. This process is immediately restarted by MSS restart services as
a Unix standalone process. The list of active session IDs is restored from its checkpointed state.
Corresponding InSession processes are restarted if they were disabled. Prior to restart, no External
Data Providers may set up new connections (connection requests are rejected). Prior to restart,
InSession objects that have completed all interactions with an External Data Provider are blocked
from terminating.

2) Failure of an InSession object. The InServer process detects the failure via a system signal.
InServer creates a new InSession object that communicates with the External Data Provider and
with the submitted InRequest based on the checkpointed list of request IDs (OODCE OID). Prior
to restart, the External Data Provider application may time out. The InRequest object that has
subsequently completed is blocked until the InSession object is restored. No other ingest sessions
that have not failed are affected.

3) Loss of the data base tables used for checkpointing. The data base management system (DBMS)
automatically checkpoints transactions to allow restorations of table information. In the event of
a hard disk failure/DBMS failure, the InRequest object detects the failure, and reports a request
failure condition to the InSession object.

4) Failure of InRequestManager. All associated InRequest pthreads are terminated. The
InRequestManager process is immediately restarted as a Unix standalone process. The identifiers
of InRequest objects are restored to the InRequestList. The InRequestManager recreates the
InRequest objects and they continue processing from their latest checkpoint (see the next scenario).

5) Failure of individual InRequest pthreads. The InRequestManager process detects the failure and
creates a new InRequest object that communicates with the originating InSession object based on
the checkpointed request ID (OODCE OID). The InRequest object reverts to its latest checkpoint,
cleans up temporary files, and continues processing from the checkpoint. No other ingest requests
that have not failed are affected. Note: as described earlier in paragraph 4.6.1.3, data is re-
transferred from the external data provider if data has not been submitted to the Data Server for
insertion.

6) Failure of the processor on which an Ingest process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one or more
of the above process restarts.

If the processor is disabled, the disablement is detected by MSS SNMP services and, where
available, a backup processor is restarted. The backup processor has full access to the data base
tables used for checkpointing and has an identical network address to that of the primary processor.

4-146 305-CD-009-001

Again, restart of individual processes is handled as described above. Note: in the Ingest subsystem
a backup processor is generally provided only in the case of Level 0 data ingest, where a separate
set of Ingest Client processors is provided for high availability.

7) Failure of the External Data Provider application. After a given number of retries to transmit
the Data Delivery Notice (DDN), operations staff are notified by means of an alert message. The
Data Delivery Acknowledgement (DDA) is simulated for InSession, which exits normally. The
DAAC operations staff will coordinate with the External Data Provider operations staff to diagnose
the failure.

8) Network failure for the connection with the External Data Provider application. Same as 7).

4.6.1.4 Ingest Operations Data Bases

The Ingest CSCI maintains two types of operations data bases:

• Ingest history logs

• Ingest configuration and template information

Ingest history logs contain detailed and summary information about ingest request status. The two
types of information are complementary and fulfill different operational requirements. Both types
of information are stored in a COTS data base management system.

The detailed information is used to restore system state after a process or system failure as
described above. Selected information (e.g., active request IDs, request state) is available for
display of status on ongoing requests. The detailed information is deleted when processing for a
request is complete. In the object class descriptions in Section 4.3, classes In Request Process
Data, In Request Process Header, and In Request File Info contain the detailed information.

The summary information is used to maintain longer-term summary statistics on ingest processing.
Selected information (e.g., request IDs, data volume ingested, number of data granules
successfully/unsuccessfully ingested) is available for display. The summary information is
updated during ingest request processing and maintained after request processing is complete.
Summary information is deleted periodically based on DAAC operational policy. In the object
class description in Section 4.3, classes In Request Summary Header and In Request Summary
Data contain the summary information.

Ingest configuration and template information is stored by operations personnel to implement data-
specific system functions and to fine-tune system performance. Operations personnel are
responsible for entering and updating templates that guide ingest data processing. Separate
templates are implemented for data type information, file type information, and metadata
configuration information. Operations personnel are also responsible for entering and updating
tunable parameter information. Parameters for ingest thresholds (e.g., maximum number of
requests to concurrently process, maximum data volume to concurrently process, number of data
transfer retries) allow operations personnel to throttle ingest processing and the flow of data into
site Data Servers. In the object class descriptions in Section 4.3, classes In Data Type Template,
In File Type Template, and In Source MCF contain template information. In System threshold, In
External Data Provider threshold, ane In Polling threshold contain tunable parameters.

Operations interfaces to the operations data bases are discussed in section 4.6.2. Additional uses
of the operations data bases are discussed in Section 4.6.3.

4-147 305-CD-009-001

4.6.2 Operator Interfaces

The Ingest GUI interface provides a collection of GUI components through which privileged users
(e.g., operator) can access services in ECS Ingest. The Ingest GUI interface is categorized into
three groups: Administration, Media Ingest, and User Network Ingest.

The Administration GUI interface provides operations personnel with the capability to monitor and
control all of the Ingest activities in the system; and to input or update the data validation templates.
The interface is composed of five GUI screens.

The first Administration GUI interface is Request Status Monitoring, which allows operations
personnel to selectively choose requests for viewing their current processing state based on the
specified criteria. The second Administration GUI interface is Request Control. Operations
personnel can use this GUI interface to delete, cancel, suspend or resume requests; suspend and
resume are post Release A functions. Next is the Threshold Control GUI interface. It allows
operations personnel to view or to update the Ingest Thresholds. The thresholds consist of 1) the
maximum allowed Ingest Request to be processed concurrently, 2) the number of transfer retry
attempts when network failure occurs, 3) the Polling timer indicating how long to wait before
starting the Ingest Polling, and 4) the maximum allowed data volume to be processed concurrently.
The next Administration GUI interfaces is Ingest History Log Viewing. The History Log provides
a summary of Ingest activities that have happened. The log entries can be queried through a
selection of criteria. The last Administration GUI interface is Data Validation Template Update.
This interface allows operations personnel to define and to update the data/file type policy and the
source/target format information. These templates are needed by the Ingest to perform appropriate
data validation and preprocessing.

The Media Ingest GUI interface allows operations personnel to perform physical media Ingest.
The type of media supported in physical media ingest in Release A is 8mm tape.

The User Network Ingest GUI interface allows privileged users to electronically ingest data into
the ECS system. There are two types of GUI screens for the User Network Ingest; one type for
science data ingest and the other type for document ingest. In addition to the ingesting service,
both types of user ingest GUI interface provides users the capability to view the status of submitted
ingest requests. This service allows users to find out the processing state of a previously-submitted
request.

All of the Ingest GUI interfaces will be implemented based on the "ECS User Interface Style
Guide" document. The document defines standards for the ECS User Interface design and
implementation. The intent of using the guide for GUI development is to help ensure that ECS has
a consistent and common look and feel user interface system wide.

The Administrative and the Media Ingest GUI interface will be developed in X-Windows/Motif.
For the User Network Ingest service, it will be developed inHyperText Markup Language
(HTML).

Table 4.6-2 provides a summary of all the Ingest GUI components.

4-148 305-CD-009-001

Table 4.6-2. Ingest GUI Screens (1 of 2)

GUI Input Output

Request Status
Monitoring

Search criteria (1 only):
-A specific Request Id
-User Id for all associated
 Requests
-All Requests

Request info:
-External Data Provider
-Request Id
-Total Ingest Data Volume
-Request State

Request Control Request Id

Control Type list (1 only):
-Cancel
-Hold
-Resume
-Change Priority

If Change Priority selected:
New Priority level

Completion status

Threshold Control Threshold Type List (choose 1):
-Max Request
-Max Request for each External Data Provider
-Max Total Data Volume
-Max Data Volume for each External Data Provider
-Max transfer retries
-Polling Timer

New value

Completion status

Ingest History Log
Viewing

Search criteria (>= 1):
-Start Time/Stop Time
-External Data Provider
-Data Type
-Final service status

Event entries from the His-
tory Log:
-Ingest start/stop date and
time
-Request Id
-External Data Provider
-Final Service Status
-Data Type
-Ingest Data Volume
-# granules/datasets
-# of files

Data Validation
Template Update

Template Type List (choose 1):
-Data Type Template
-File Type Template
-Source MCF Template

Update Type (choose 1):
-Update Template Entry
-Add Template Entry
-Delete Template Entry

If Update or Add selected:
New Template Entry Info

Completion Status

4-149 305-CD-009-001

4.6.3 Ingest Production Reports

In addition to ad hoc ongoing request status displays discussed above, the Ingest subsystem
provides the standard reports described in Table 4.6-3.

GUI Input Output

Media Ingest Media Type
Total Media Count
Media Volume
Media Data Provider

Request Id
Processing State (inform
periodically)

User Network In-
gest

by User:
-Data Type
-File List
-Data Avail date/time
-Desired Priority

by System:
-External Data Provider/User Id
-File Size

OPTION:
-Save screen request to file

Request Id
Processing State (inform
periodically)

User Document In-
gest

Same as above

Table 4.6-3. Standard Ingest Production Reports

Report Type Report Description Intended Audience

Ingest History
Report (summary
and detailed ver-
sions)

The report gives a detailed account of all ingest re-
quests processed during a reporting period, as well
summary statistics. The report supplies operations
staff with a log and summary view of ingest request
completion performance (e.g., maximum, minimum, av-
erage volume of data ingested). The report is generat-
ed on a daily, weekly, and monthly summary basis, and
as an ad hoc report.

Ingest Technician
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Assistant
DAAC Manager

Ingest Error Re-
port

The Ingest Error Report is a summary report of the fre-
quency of errors of different types encountered during
ingest processing. The report consists of two sections-
-Data Set Summary and Error Class Summary. The
Data Set Summary lists a count of reported errors, by
error class, for each data set type. The Error Class
Summary lists a count of reported errors for each error
class.

Same as above

Table 4.6-2. Ingest GUI Screens (2 of 2)

4-150 305-CD-009-001

This page intentionally left blank.

5-1 305-CD-009-001

5. ICLHW - Ingest Client HWCI

5.1 Introduction
Overall Ingest Subsystem responsibility incorporates the support of multiple functions within ECS
including user data ingest, hard media ingest, and the monitoring of ingest status. The principal
area of ICLHW responsibility in the SDPS architecture is the ingest and storage of Level 0 (L0)
data sets for a period of one year. The criticality of the timely and reliable storage of L0 data sets
demands that a separate high reliability, high availability data server instantiation be dedicated to
L0 data ingest. Data which has been ingested will be made available to the Processing Subsystem
for the generation of higher level products. The daily volume of L0 data to be ingested at each
DAAC is taken from the 6/21/95 ECS Technical Baseline, and is shown in Table 5.1-1. Dates listed
at the top of this table correspond to dates where a change to the mission baseline occurs. The Data
Server Volume of this document indicates those data products which will be ingested directly into
hardware provided by the Data Server Subsystem utilizing ingest client software. Sizing of Ingest
Subsystem resources is sufficient to accommodate the listed volumes, as described in the following
paragraphs. The daily volumes to be ingested change at each ECS release, generally increasing as
additional missions are supported. The Ingest Subsystem design is therefore scaleable to support
the growing daily and total data volumes.

Functionality similar to that provided by the ingest client hosts is responsible for the ingest of data
types other than L0 in the Data Server Subsystem. Ingest client software capabilities are mapped
to data server components for support of the ingest of data types that are stored permanently within
the data server. The ingest and archiving of these other data types is discussed in the Data Server
Subsystem description volume of this document.

* Landsat-7 L0R data at EDC enters the SDPS through the Ingest Subsystem and is archived within the Data
Server Subsystem

Table 5.1-1. Daily L0 Ingest Volumes

Level 0 GB/day 9/30/97 9/30/98 12/31/99 10/31/01 12/31/02 12/31/03

ASF

EDC* 0.00 140.00 140.00 140.00 140.00 140.00

GSFC 0.00 66.96 67.57 149.95 150.43 151.51

JPL 0.00 0.00 0.07 0.07 0.07 0.07

LaRC 0.25 41.54 41.55 42.25 77.24 77.24

MSFC 0.26 0.26 0.26 0.98 0.98 0.98

NSIDC

ORNL

Sum (GB/day): 0.51 248.76 249.45 333.25 368.72 369.80

5-2 305-CD-009-001

5.1.1 HWCI Design Drivers

The Ingest Subsystem hardware components consist of the client host servers, working storage,
and L0 archive repository. The rationale for the separation of L0 data ingest functions from other
data server functionality is discussed in Section 3.2.2. The data rates and volumes to be supported
at each of the DAAC sites varies, but the basic Ingest Subsystem configuration is consistent at all
sites and is described in the following section. The HWCI for the Ingest Subsystem consists solely
of the Ingest Client HWCI (ICLHW), which is comprised of the ingest client hosts required for
ingest management, control, monitoring, and processing of ingested data. The ICLHW also
contains working storage and archive repository components similar to those of the data server
Working Storage HWCI (WKSHW) and Data Repository HWCI (DRPHW). Those components
utilized for the ICLHW are specialized for use in the Ingest Subsystem due to the unique ingest
reliability, maintainability, and availability requirements as discussed in Section 3.2.2.1.

The client hosts manage the transfer of data into, out of, and within the Ingest Subsystem. The
loading on the client hosts is principally in two areas: I/O loading associated with the ingest of
Level 0 data from external sources and CPU loading required to perform basic ingest data checks,
metadata validation, and metadata extraction. Additional functions to be performed include
logging, status, and reporting activities, coordination of data transfers between working storage
and the ingest L0 archive, maintaining a database of all data contained within the Ingest
Subsystem, and servicing queries and retrievals on the archived L0 data. The principal factors
affecting sizing of the client hosts are summarized in Table 5.1-2.

5.1.1.1 Key Trades and Analysis

One trade analysis specific to the Ingest Subsystem hardware configuration was performed prior
to the ECS CDR. The ECS Ingest Subsystem Topology Analysis, ECS Technical Paper 440-TP-
014-001, analyzes and documents the configuration of the Ingest Subsystem based on the results
of the ECS Ingest Subsystem Design Analysis delivered at PDR. The topology analysis focuses
on factors that affect the sizing requirements of Ingest Subsystem components, as well as the
capability of the configuration to meet reliability and availability requirements. Methods for
assuring acceptable system RMA, as well as the flexibility to evolve the ingest configuration as
mission requirements change are discussed as key Ingest Subsystem design drivers.

Table 5.1-2. Ingest Client Sizing Factors

Sizing factors Driving requirements

Ingest client I/O

•

Receipt of L0 data from multiple external sources

•

Servicing L0 archive queries

•

Support of CPU loading factors

CPU loading

•

Data reformatting

•

Support of ingest I/O loads

•

Ingest data server database maintenance

•

Ingest data checking

•

Metadata validation and extraction

5-3 305-CD-009-001

The principal output of the study is the sizing of Ingest Subsystem components at each of the
Release A DAACs. The component sizing was accomplished using a combination of a paper
analysis of storage required to satisfy daily and annual ingest volumes, plus the development of a
queingmodel showing several system loading parameters at each stage of the ingest process. An
additional result of this study is that the implementation of the Ingest Subsystem architecture
presented at PDR will satisfy the RMA and data ingest requirements based on an analysis of key
Ingest Subsystem drivers in Section 3.2. The implementation of this architecture utilizing
redundant ingest client hosts in a prime/backup configuration, as well as high reliability RAID
storage devices will provide the system availability and scaleability necessary to support the
reliable ingest of data. Outputs from this trade study have been incorporated into the design
information presented in this document.

5.1.1.2 Ingest HWCI Sizing and Performance Analysis

The sizing of Ingest Subsystem hardware both from a system level and a component level is based
on the 6/21/95 version of the ECS Technical Baseline. Among the information included in the
baseline is data by instrument, average daily data volume by level, and data destination. The
average expected daily and annual data volumes at each site were calculated from this information
and used to determine the required ingest hardware capabilities. Ingest client hosts are sized to
accommodate the required ingest volumes as well as I/O and CPU capabilities to support internal
data transfers associated with metadata validation and extraction, L0 archive data retrieval, and
transfer of data to the Data Server or Processing Subsystems. Working storage disks are sized to
accommodate the above functions, as well as provide contingency space for the transfer of more
than one days worth of data within a 24-hour period. Working storage space is also effectively
increased by the use of a separate L0 rolling store, to which ingested data is written as soon as
required metadata extraction and validation is performed. The ingest L0 archive is sized to store
one years worth of L0 data, with sufficient storage and I/O capabilities to support anticipated
archive write and read loads. Since high RMA is a driver for the Ingest Subsystem, all critical
components also include some type of sparing or redundancy to ensure that availability
requirements are met.

An Ingest Queuing Model (Imodel) was developed to assist in the sizing of Ingest Subsystem
components, and is a very high level look at the data flows in the Ingest subsystem. This analysis
is valid for systems where each queue has only one server, and the inter-arrival times and service
times have exponential probability densities. In addition, the results are only valid for the steady-
state conditions, where the probability of finding the system in a given state does not change with
time.

Model output is dependent on a series of model input parameters that may be varied depending on
characteristics of the data to be ingested, processed, and stored, as well as network and Ingest
Subsystem component capabilities and performance. Parameters such as server CPU and I/O
performance, disk I/O, network performance, and the number of operations/byte associated with
each server process (e.g., capture, format, archive, distribute) may all be varied to analyze the
sensitivity of changes in data flows and system architecture. The load presented by each flow in
pkts/sec is a function of the number of bits/sec input from the previous process and the mean size
of packet/data set that this process expects. The “Source” item sends packets whose size and rate
depend on the network technology chosen. FDDI is baselined at the Release A sites, with an

5-4 305-CD-009-001

assumed network efficiency of 60% from the maximum 100 Mbps clock rate. The "capture" item
includes server functions that receive data from the network or hard media device. Capture rate is
a function of the input bandwidth and server I/O capabilities. The "work.store IN" includes the
writing of the ingested data to working storage and "work.store OUT" models the writing of data
back to the server to perform the "format" operation. Both read and write operations have
associated transfer rate and access time estimates for each data transfer. Conservative estimates of
2 MB/sec read and write rates are used based on results from Data Server prototyping efforts.
Writing of data to the L0 rolling store archive involves the capabilities of the working storage
disks, server I/O, and rolling store devices. Finally, the number of copies of data read from the
archive and sent to a data sink (e.g., Processing Subsystem) may be varied to determine the
additional load of reprocessing on Ingest Subsystem resources.

Competitive procurement restrictions constrain this paper to identification of the class of
component and general performance characteristics used in the analysis, rather than actual
candidate components. The client host CPUs are low to mid-level Symmetric Multi-Processing
(SMP) 32-bit machines, capable of supporting multiple network (FDDI) and direct-connect (SCSI
II) devices. Working storage devices are RAID 5 units with a minimum of 2.0 days worth of space
allocated to ingest working storage required to support the functions of acquiring, processing,
validation, and archiving L0 data. This volume of working storage allows for one days worth of
L0 data to be staged for processing, an additional days worth available for subsequent ingest, and
an additional 25% available to service additional Ingest Subsystem needs (e.g., L0 archive retrieval
support, pre-processing, quality checking). Additional magnetic disk resources are supplied within
the Ingest Subsystem to support items such as client host operating system and application
software and L0 archive database directory information. The L0 rolling store may be implemented
in several ways, subject to additional analysis prior to the delivery of the final version of this
technical paper. Additional RAID was originally planned to function as the L0 rolling store, as the
annual volumes at LaRC and MSFC were in the 30-35 GB range. Recent inclusion of TRMM
spacecraft housekeeping packets in the volume to be stored increases the annual volumes to the 90-
95 GB range. A study has been initiated to compare cost, performance, reliability, and other issues
associated with adding more RAID versus the use of an alternate archive device (e.g., 3590 drives
in a small stacker configuration). The results of this analysis will be presented at CDR if the results
indicate that replacement of some of the RAID with another storage media is a technically
desirable and cost-effective option.

Analysis of the ingest queuing model developed for CDR confirms the results of the paper analysis
conducted prior to PDR supporting the ability of the Release A Ingest Subsystem configurations
to support Level 0 data ingest requirements. Projected maximum individual component utilization
in support of Level 0 data ingest is less than ten percent under nominal operations. The additional
subsystem capacity is available for contingency (e.g., ingest of more than one days worth of data
in one day or resolving difficulties encountered during reformatting or metadata validation
activities), Version 0 data ingest, and subsystem testing requirements. The DAAC-specific volume
presents additional Ingest Subsystem hardware sizing detail and rationale.

5-5 305-CD-009-001

5.1.1.3 Scaleability, Evolvability, and Migration to Release B

Ingest Subsystem hardware must be easily scaleable to support both different subsystem
capabilities at each of the DAAC sites as well as changing data ingest requirements over the life of
the EOS program. The architecture accommodates the required scaleability through several
different mechanisms within the Ingest Subsystem components as described below.

Ingest Client Hosts - Client host resources may be increased in two ways as support for the number
and complexity of ingest clients increases. The first is through the addition of CPU, internal
memory, and I/O capabilities within a given client host platform or family. The second is the
addition of additional client host platforms to support additional interfaces and data providers as
the ingest client load increases. Client hosts can be added virtually without limit as network
attached storage devices are incorporated into the architecture. Release A client hosts that are
planned to be selected will possess sufficient processing and I/O capabilities so that it will not be
necessary to upgrade them at Release B at some of the DAACs. Machine upgrade or exchange for
a larger class machine may be necessary where processing and I/O demands for a single interface
increase significantly.

Working Storage - Local RAID disk banks can be added as working storage needs increase. The
limiting factor becomes the number of client hosts that can be directly connected to a particular
disk bank. Later ECS releases may also use network attached storage to facilitates the addition of
disk space: Disks can be added to the network connections, and when the networks begin to
become saturated, segmentation and subnetting techniques can improve performance.

L0 Archive Repository - The L0 archive repository is scaleable much like the client hosts and
working storage components in that additional media drives within a repository or additional
repositories may be added as required storage volumes increase. The ability to use multiple file
servers and the mixing of storage solutions like FSMS based systems in the architecture lends itself
to easy scaling. Adding additional file servers can enhance both file handling bandwidth and
processing capabilities. The flat common access nature of the robotics based tape repositories
allows the adding of file servers to gain access to the data without burdening existing file servers.

5.1.2 HWCI Structure

The Ingest HWCI consists of all of the hardware contained within the Ingest Subsystem. Client
host computers control the flow of data into, out of, and within the Ingest Subsystem. Working
storage magnetic disks provide temporary storage for ingested data. The L0 archive repository
contains the devices required at each site for storage of Level 0 data for a period of one year. These
are the principal components which comprise the Ingest HWCI, and are described in greater detail
in Section 5.1.2.2. Other peripheral devices such as administrative terminals or workstations are
required for Ingest Subsystem and overall SDPS control, but are not strictly part of this HWCI.
The Ingest Subsystem may also make use of hardware contained within other HWCIs, such as the
Distribution and Ingest Peripheral HWCI (DIPHW) components in support of the ingest of data
from hard media. Figure 5.1-1 shows the generic Release A Ingest HWCI configuration. DAAC-
specific instantiations of this configuration are contained in the DAAC-specific configuration
volume.

5-6 305-CD-009-001

5.1.2.1 Ingest HWCI Connectivity

The ingest clients support several different classes of interfaces. These interfaces support ingest
of data, insertion of the data into the ingest L0 archive repository, and control and monitoring of
Ingest Subsystem resources. The interface classes are summarized in Table 5.1-3.

Figure 5.1-1. Ingest HWCI Block Diagram

Some ingest data sources will provide data via different types of hard media, but this is generally
limited to contingency transfers and possibly some Version 0 migration data in Release A. The
majority of the Release A data transfers will occur through an electronic interface. The mechanism
for electronic transfer also varies depending on the data source. Some data sources will notify ECS
of the availability of data, which the Ingest Subsystem will get from the source. Others will put

Table 5.1-3. Ingest Client Interfaces

Ingest Client I/F I/F Type I/F Instantiation Examples

External data ingest Network FDDI

Ingest peripherals (hard media ingest) Network/bus SCSI II

Ingest working storage Network/bus SCSI II

Ingest L0 archive repository Network/bus SCSI II

Client host control/monitoring Network FDDI, Ethernet

Ingest Subsystem control/monitoring Network FDDI, Ethernet

To data server
and processing

subsystems
From external
data source

Client
host(s)

L0
archive

repository

Working
storage

Admin.
workstation

5-7 305-CD-009-001

data in a predefined location which is then periodically polled by the ingest client software. At
Release A, the principal driver in terms of daily electronic L0 data ingest is the data received
through the SDPF for the TRMM platform. At Release B, the principal driver of daily electronic
L0 data ingest is the data received through EDOS for the AM-1 platform and Landsat-7 data
received at EDC. The Moderate Resolution Imaging Spectrometer (MODIS) and Multi-angle
Imaging Spectro-Radiometer (MISR) AM-1 instrument data sent to GSFC and LaRC, respectively,
comprise the majority of the L0 data to be archived within the Ingest Subsystem for the first several
years of ECS operations. The reliable ingest and archiving of this data, and the associated
management of Ingest Subsystem resources are the principal drivers in the Ingest Subsystem
design. The effects of the interfaces driving the ingest HWCI design on the sizing factors identified
in Table 5.1-1 are summarized in Table 5.1-4. Identified impacts on sizing factors and Ingest
Subsystem components are estimates of the relative affects that a particular interface to be
supported has on the subsystem. Items designated as having a moderate or high impact will drive
the capabilities of the individual components as the site supporting that interface.

The Ingest servers and workstation(s) will be directly connected to the DAAC FDDI network, as
is illustrated in Figure 5.1-2. The Ingest servers will contain dual-attached station (DAS) cards,
which will be dual-homed to separate FDDI concentrators. This provides redundancy so that full
connectivity will exist to the servers even in the event of a concentrator failure. The workstation(s)
will contain single-attached station (SAS) cards and each will be connected to a single
concentrator, but they will also be split across concentrators so that they are not all connected to
the same unit. The FDDI concentrators are in turn connected to the FDDI switch. (Refer to section
5.2 of Volume 0 for a general description of DAAC networks.)

The Ingest subsystem will have direct interfaces to the L0 data provider (e.g., NOLAN at LaRC
and MSFC, EBnet as GSFC). The L0 router(s) will contain a DAS card which will be connected
to the two separate FDDI concentrators, which will in turn be connected to the FDDI switch via a
physically cabled FDDI ring.

* Not all external interfaces are supported or required at Release A

Table 5.1-4. Ingest HWCI Interface Drivers

External I/F* Principal supported
functions

Affected sizing factor
(high or moderate impact)

Impacted Ingest Subsystem
components (high or moderate

impact)

EDOS L0 data ingest I/O, CPU Client hosts, working storage, L0
archive repository

SDPF L0 data ingest I/O, CPU

NESDIS
(NOAA)

Ancillary data ingest CPU Client hosts

Landsat-7 L0R data ingest I/O, CPU Client hosts, working storage

SCF TBD

ADCs Ancillary data ingest CPU Client hosts

Other DAACs L0 data ingest CPU Client hosts, ingest peripherals

IPs L0 data ingest CPU Client hosts

Users TBD

5-8 305-CD-009-001

Figure 5.1-2. Ingest Network Connectivity

5.1.2.2 Ingest HWCI Component Description

The Ingest HWCI consists of the ingest client hosts, working storage, and L0 archive repository,
and is described in the following paragraphs. Estimates for the number of client hosts and other
Ingest Subsystem hardware required to support required ingest functions at each DAAC in the
Release A time frame are summarized in Appendix A. Table 5.1-5 summarizes the classes of
components which comprise the Ingest HWCI at Release A.

* Required at Release B at certain sites

Table 5.1-5. Ingest HWCI Component Descriptions

Component
Name

Class/Type Comments

Client Host SMP Server W/S / Server W/S Certain sites require single or multi-pro-
cessor workstation-based servers, while
others require mid-level SMP servers
(Release B). See Appendix A for the
hardware to client host class mapping at
each site.

Working Storage RAID disk All sites will utilize one or more RAID
units. MSFC and LaRC will utilize work-
ing storage RAID units in the Release-A
time frame in place of other data repos-
itory hardware.

L0 Archive Re-
pository*

Archive Robotics* An Automated Tape Library (ATL) or
similar robotics unit provides the 1 year
storage of L0 data. Required at certain
sites in Release B and beyond.

Linear Magnetic Drives* A typical ATL will contain three media
drives (e.g., D3 or 3590 tape) per unit.
The three media drives perform input,
output, and backup functions.

Work
Station

Ingest
Server

Ingest
Server

FDDI
Switch

FDDI Concentrator

NOLAN/
EBnet
Router

FDDI Concentrator

5-9 305-CD-009-001

Client Hosts

The client hosts will perform pre-processing of the ingested data sufficient both to ensure the basic
quality of the received data and to prepare it for archiving and/or further processing. Checks
specific to the transfer mechanism (e.g., list of contents, checksums) will be performed, and
successful receipt and storage of the data will be acknowledged to the sender and recorded in the
ingest logs. It is assumed that for the Release A configuration all data sets will be in a standard
format and that metadata will be read either from the file headers, well defined byte locations
within the file, or from separate files provided by the data producers rather than by derivation from
the data itself. Metadata to be read and logged or generated upon ingest includes data set name,
time of ingest, observation time, and granule id. Limited format conversion is required for Release
A, but future requirements may include the need for diverse and complex conversions to be
performed on data as it is ingested. Additional CPU capabilities necessary to support these
conversions will be determined as the required conversions are identified.

Ingest host I/O capabilities must include support for multiple high-bandwidth internal network and
peripheral connections. The required capabilities will include technologies such as HiPPI, SCSI II
fast/wide, and FDDI for internal network and peripheral connections based on the needs at each
site. External network connections may utilize switched technology such as Fiberchannel or ATM
for the sites requiring higher bandwidth in the Release B timeframe. Release A network loads are
easily accommodated on the dual FDDI rings planned to be implemented at each Release A
DAAC, but scaleability of the servers to accommodate additional technologies is an important
consideration.

The types of high performance network connections and data rates to be supported by the client
host hardware requires significant CPU capabilities. Candidates for client host hardware are
discussed in the DAAC-specific configuration appendix and are based on the ingest I/O rate and
volume requirements at each site. In general, the client host CPUs are low to mid-level Symmetric
Multi-Processing (SMP) 32-bit machines, capable of supporting multiple network (FDDI) and
direct-connect (SCSI II) devices. Commonality of components between subsystems is an SDPS
design goal. Therefore, the choice of the platform for the ingest client hosts is one that has been
made together with that for the data server specifically, as well as processing and other SDPS
subsystems, as appropriate. It is typical that workstations from a given manufacturer can be
expanded in their CPU and I/O capabilities within a given platform and without significant changes
to the system or application software. CPU and I/O capabilities vary at different sites, but should
be supported by the same basic platform which may be upgraded with additional capabilities as
increased I/O and processing loads demand.

Working Storage

Short term working storage provides a staging area for data moving both into the Ingest Subsystem
from network connections or ingest peripherals, and out of the Ingest Subsystem to the Processing
and Data Server Subsystems. Short term working storage performance and capacity is driven by
the requirement that the Ingest Subsystem reliably and efficiently capture large volumes of L0 data
as received from EDOS, SDPF, and other sources. The implementation is also driven by the need
for high RMA, as L0 data received from these sources must not be lost or delayed in its availability
to other ECS subsystems. This function will be implemented using high performance RAID

5-10 305-CD-009-001

magnetic disks. Arrays will be shared across ingest hosts and will be sized to handle the anticipated
ingest volume, the staging of data out of the Ingest Subsystem, and working storage volume
necessary for reformatting, metadata validation, and metadata extraction operations.

Other than the higher RMA requirement, the Ingest Subsystem requirements for working storage
are largely the same as those for the Data Server Subsystem and can be satisfied with the same type
of hardware. Availability will be 0.999 or better for the ingest of L0 data using a strategy
encompassing the use of hot and/or warm spares, the reallocation of working storage space based
on data priority within the ingest, processing, and Data Server Subsystems, and the regular and
timely transfer of data to long term storage. Working storage devices are RAID 5 units with a
minimum of 2.0 days worth of space allocated to ingest working storage. These devices will be
sized to the data requirements of the individual sites and will support the functions of acquiring,
processing, validating, and archiving L0 data. This volume of working storage allows for one days
worth of L0 data to be staged for processing, an additional days worth available for subsequent
ingest, and an additional 25% available to service additional Ingest Subsystem needs (e.g., L0
archive retrieval support, pre-processing, quality checking). This equates to a minimum of 625
MB at LaRC and 660 at MSFC. The planned 100 GB units to be shared between working storage
and L0 rolling store functions provide more than sufficient capacity at each site. Additional
magnetic disk resources are also supplied within the Ingest Subsystem to support items such as
client host operating system and application software and L0 archive database directory
information.

L0 Archive Repository

The Ingest Subsystem, through a combination of short term working storage and long term storage
resources, must pass ingested data to other ECS subsystems as required for processing, long term
storage, or other needs of the data system. An additional function of the long term storage portion
of the Ingest Subsystem is to store all ingested spacecraft Level 0 data as received from EDOS for
a period of one year. This is accomplished through the use of a data repository which is dedicated
to the Ingest Subsystem. For Release A, additional RAID devices are planned for use for the L0
archive.

The volumes to be stored at Release B are significant enough to require the addition of a robotics-
based archive unit as described below. The L0 archive receives data from the short term working
storage and stores it in an automated fashion on high density media. The likely access pattern to
this data is one of initial sequential ingest, possible reading of some or all of the ingested data
within 24 hours or less, and then infrequent subsequent access. This access pattern, along with the
data volumes and ingest rates to be supported at most of the Release B sites, lends itself to a helical
scan streaming tape technology (e.g., D3) or linear tape (e.g., 3590) in an automated tape library
(ATL) configuration. Multiple tape drives would be available for simultaneous read, write, and
hot spare capabilities. The configuration of the ingest L0 archive hardware (e.g., drives, media,
robotics, interfaces) will be the same as that for the Data Server Subsystem repositories to support
the goal of commonality in development, operations, and maintenance of ECS hardware and
software. The possible exception to this would be the incorporation of additional media drives and
interfaces to support the increased RMA requirements of the Ingest L0 archive, but this would not
significantly change the implementation of the repository. The repositories at each site will be

5-11 305-CD-009-001

sized to accommodate sufficient media to store one years worth of L0 data, plus a scaling factor of
approximately 5% to account for file storage management overhead and data storage
inefficiencies. Table 5.1-6 shows the required annual volume of L0 data to be stored at each site.

*Landsat-7 L0R data is stored within the data server repository at EDC.

5.1.3 Failover and Recovery Strategy

The Ingest Subsystem failure and recovery strategy is implemented to satisfy the RMA
requirements associated with science data ingest, which require an operational availability of 0.999
and switchover from a primary to backup capability within 15 minutes. The failover/recovery
strategy for the Ingest Subsystem is implemented in several ways:

• Recovery from the failure of individual data transfers is initiated automatically, with a
tunable number of automated retries before a failure alert is sent to an operator.

• Recovery from a failure in the primary client host CPU involves detection of the failure,
resetting the network address of the backup client host to that of the primary, mounting the
dual-ported disks shared by the backup and primary, and other minimal software
reconfiguration required to make the backup to look identical to the primary.

There are three types of network failures that may affect the Ingest subsystem:

• If the FDDI cable between a host and the FDDI concentrator is severed or damaged, then a
new cable would need to be installed. No other configuration would be required.

• If an individual port on the FDDI concentrator fails, then the attached host must be moved
to another port, again with no other configuration required.

• Finally, if the entire concentrator fails, then it will have to be replaced, which can be done
rapidly since the units require very little configuration.

Table 5.1-6. Annual L0 Storage Volumes

Level 0 (GB/
year)

9/30/97 9/30/98 12/31/99 10/31/01 12/31/02 12/31/03

ASF

EDC*

GSFC 0 24440 24663 54732 54907 55301

JPL 0 0 26 26 26 26

LaRC 91 15162 15165 15421 28190 28192

MSFC 96 96 96 99 99 99

NSIDC

ORNL

Sum (GB/
year):

187 39698 39950 70278 83222 83618

5-12 305-CD-009-001

Note that the above failures result in service interruption only to the workstation(s). For the Ingest
servers, there is no single point of failure for the network for receiving L0 data. Since all Ingest
servers are attached to two hubs, they will communicate as normal in the event of a cable or
concentrator fault, and the applications will be unaware of and unaffected by the event (e.g., L0
ingest will not be interrupted).

Failures in working storage are accommodated in two ways:

• Redundancy is an inherent design feature of RAID devices, typically allowing the failure
of one drive in the unit without any loss of data and minimal performance degradation.
Many RAID units also incorporate software that keeps track of soft errors as well as hard
failures, allowing drives that may be gradually failing to be replaced prior to a hard failure.
Even in the event of a hard failure, the unit can continue to operate while a new drive is
installed and rebuilt using the data from the other drives in the unit.

• A catastrophic failure of the RAID unit would require that ingest operations be temporarily
limited to critical data ingest only. Each Release A site has at least two RAID devices, with
one designated as working storage and one as the Level 0 rolling store. Open capacity in
the rolling store drive could temporarily be used to take over working storage functions.

A-1 305-CD-009-001

Appendix A. Requirements Trace

The Interim Release 1 (Ir1) and TRMM Development (Release A) Level 4 requirements listed in
the following table reflect the state of the RTM database on July 15, 1995. The text provided below
is a subset of that in the RTM data base and is included to aid the reader in mapping requirements
to object classes, CSCs, and CIs.

Table A-1. Requirements Trace(1 of 11)

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00010 The INGST CI shall accept Network Ingest Requests to re-
quest automated electronic network ingest of a collection of
Data. The collection of Data shall describe one or more
Data Granules.

InSession

S-INS-00020 The INGST CI shall check the Network Ingest Request to
verify that the date/time prior to which the data will remain
available is a valid date/time.

InRequest

S-INS-00030 The INGST CI shall authenticate the provider of a Network
Ingest Request as an authorized provider of data to be in-
gested.

CsGateway

S-INS-00040 The INGST CI shall report status to the provider of a Net-
work Ingest Request and to the Error Log indicating suc-
cessful or unsuccessful authentication of the provider as
authorized to submit the request.

CsGateway

S-INS-00050 The INGST CI shall report the following to the MSS event log
services: a. Receipt of a network ingest request; b. Re-
sponse to a network ingest request.

InSession

S-INS-00060 The INGST CI shall report status to the provider of a Net-
work Ingest Request for the following:
a. File transfer failure
b. File size discrepancies
c. Invalid Data Type Identifier
d. Missing required metadata
e. Metadata parameters out of range
f. Data conversion failure
g. Failure to archive data
h. Inability to transfer data within the specified time
window
i. Missing required request information
j. Successful archive of the data

InSession

S-INS-00070 The INGST CI shall provide the capability to periodically
check a location accessible to the ESN for the presence of a
Delivery Record file describing data to be ingested. The De-
livery Record file shall contain the same information as a
Network Ingest Request.

InPollingIngestSession

S-INS-00080 The INGST CI shall read a Delivery Record file describing
data to be ingested at a location accessible to the ESN and
submit a corresponding Network Ingest Request to be pro-
cessed.

InDAN

A-2 305-CD-009-001

L4 Rqmt ID L4 Requirement Text Object Class, CSC,
or CI

S-INS-00085 The INGST CI shall report status to the provider of a polling
ingest request (delivery record file) for the following: a. File
transfer failure; b. File size descrepancies; c. Invalid data
type identifier; d. Missing required metadata; e. Metadata
parameters out of range; f. Failure to archive data; g. Miss-
ing required request information; h. Successful archive of
the data.

InPollingIngestSession

S-INS-00090 The INGST CI shall provide the capability for authorized op-
erations staff to set the period between checking for the
presence of Delivery Record files.

InThresholdController

S-INS-00100 The INGST CI shall provide the capability to periodically
check a location accessible to the ESN for the presence of
data granule files.

InPollingIngestSession

S-INS-00110 The INGST CI shall submit an Polling Ingest Request after
detecting the presence of data granule files in a location ac-
cessible to the ESN. The request shall contain the file loca-
tion.

InPollingIngestSession

S-INS-00120 The INGST CI shall provide the capability for authorized op-
erations staff to set the period between checking for the
presence of external data granule files.

InThresholdController

S-INS-00130 The INGST CI shall interactively accept Hard Media Ingest
Requests from operations staff for data to be ingested from
hard media.

InMediaIngest

S-INS-00140 The INGST CI shall check the Hard Media Ingest Request to
verify that the Media Type is a type supported by the facility
to which the request was submitted.

InMediaIngest

S-INS-00150 The INGST CI shall verify that the External Data Provider
specified in a Hard Media Ingest Request is an authorized
provider of hard media to be ingested.

InMediaIngest

S-INS-00160 The INGST CI shall authenticate that the Hard Media Ingest
Request is input by operations staff authorized to ingest hard
media data.

InMediaIngest

S-INS-00165 The INGST CI shall read a Delivery Record file describing
data to be ingested to determine the files to be ingested after
hard media data transfer.

InDAN

S-INS-00170 The INGST CI shall report Hard Media Ingest Request sta-
tus to the submitting operations staff for the following:

InMediaIngest

S-INS-00180 The INGST CI shall interactively accept Network Ingest Re-
quests from authorized science users for electronic network
ingest of a collection of Data from a location accessible via
the ESN. The collection of Data shall describe one or more
Data Granules.

InNetworkIngest

S-INS-00190 The INGST CI shall check the Network Ingest Request to
verify that the date/time prior to which the data will remain
available is a valid date/time in a Network Ingest Request
entered interactively by a science user.

InRequest

S-INS-00200 The INGST CI shall allow a science user to specify the list of
granule files in an interactive Network Ingest Request based
on a displayed list of existing files stored on magnetic disk.

InNetworkIngest

Table A-1. Requirements Trace(2 of 11)

A-3 305-CD-009-001

S-INS-00205 The INGST CI shall determine the External Data Provider for
a Network Ingest Request entered interactively by a science
user.

InNetworkIngest

S-INS-00207 The INGST CI shall automatically determine the data vol-
ume for each file in the list of granule files for an interactively
entered Network Ingest Request.

InNetworkIngest

S-INS-00208 The INGST CI shall authenticate that the interactive science
user entering a Network Ingest Request is authorized to re-
quest ingest of data.

InNetworkIngest

S-INS-00209 The INGST CI shall report to the Error Log an unauthorized
attempt to interactively request ingest of data.

InNetworkIngest

S-INS-00210 The INGST CI shall allow authorized science users to save
the contents of an interactively entered Network Ingest Re-
quest in a file with a specified file name.

InNetworkIngest

S-INS-00220 The INGST CI shall report status to the interactive submitter
of a Network Ingest Request for the following:

InNetworkIngest

S-INS-00221 The INGST CI shall interactively accept Document Ingest
Requests from authorized science users for ingest of a sin-
gle collection of document Data from a location accessible
via the ESN. The collection of document Data shall describe
one or more document Data Granules.

InNetworkIngest

S-INS-00222 The INGST CI shall check the Document Ingest Request to
verify that the date/time prior to which the data will remain
available is a valid date/time in a Document Ingest Request
entered interactively by a science user.

InRequest

S-INS-00224 The INGST CI shall allow a science user to specify the list of
document granule files in an interactive Document Ingest
Request based on a displayed list of existing files stored on
magnetic disk.

InNetworkIngest

S-INS-00225 The INGST CI shall determine the data provider and assign
the Priority Information for a Document Ingest Request en-
tered interactively by a science user.

InNetworkIngest

S-INS-00226 The INGST CI shall automatically determine the data vol-
ume for each file in the list of document granule files for an
interactively entered Document Ingest Request.

InNetworkIngest

S-INS-00227 The INGST CI shall authenticate that the interactive science
user entering a Document Ingest Request is authorized to
request ingest of data.

InNetworkIngest

S-INS-00228 The INGST CI shall report to the Error Log an unauthorized
attempt to interactively request ingest of document data.

InNetworkIngest

S-INS-00229 The INGST CI shall allow authorized science users to save
the contents of an interactively entered Document Ingest
Request in a file with a specified file name.

InNetworkIngest

S-INS-00230 The INGST CI shall report status to the interactive submitter
of a Document Ingest Request for the following:

InNetworkIngest

S-INS-00235 The INGST CI shall accept ingest Status Requests from sci-
ence users to determine the status of:

InStatusMonitor

S-INS-00240 The INGST CI shall determine the User Identifier for a sci-
ence user submitting an ingest Status Request.

InStatusMonitor

Table A-1. Requirements Trace(3 of 11)

A-4 305-CD-009-001

S-INS-00250 The INGST CI shall update status on a science user's ongo-
ing Network Ingest Requests, based on User Identifier, to
the user.

InStatusMonitor

S-INS-00260 The INGST CI shall provide science users the capability to
display the status of the user's ongoing request processing.
Displayed status shall include the External Data Provider, in-
gest Request Identifier, total ingest data volume, and Re-
quest State.

InStatusMonitor

S-INS-00270 The INGST CI shall accept ingest Status Requests from au-
thorized operations staff to determine the status of:

InStatusMonitor

S-INS-00280 The INGST CI shall determine the User Identifier for an op-
erations staff member submitting an ingest Status Request.

InStatusMonitor

S-INS-00290 The INGST CI shall authenticate the User Identifier of oper-
ations staff requesting status on all ongoing Ingest Re-
quests.

InStatusMonitor

S-INS-00295 The INGST CI shall return an error status to the requester
and log information in the Error Log if status is requested on
ongoing Ingest Requests from an unauthorized requester.

InStatusMonitor

S-INS-00300 The INGST CI shall return status on ongoing Ingest Re-
quests to an authorized operations staff member.

InStatusMonitor

S-INS-00310 The INGST CI shall provide authorized operations staff the
capability to view the status of ongoing ingest processing.
Displayed status shall include the External Data Provider, in-
gest Request Identifier, total ingest data volume, and Re-
quest State.

InStatusMonitor

S-INS-00315 The INGST CI shall provide the capability for authorized op-
erations staff to select status of ongoing Ingest Request pro-
cessing for viewing by means of the External Data Provider.

InStatusMonitor

S-INS-00316 The INGST CI shall accept an Ingest Request from autho-
rized applications.

InRequestManager

S-INS-00317 The INGST CI shall authenticate the User Identifier of an ap-
plication submitting an Ingest Request.

InRequestManager

S-INS-00318 The INGST CI shall determine the Priority Information for
each Ingest Request based on the External Data Provider
and the requested ingest priority for the request.

InRequestManager

S-INS-00319 The INGST CI shall add a submitted Ingest Request to a list
of Ingest Requests sorted by Priority Information.

InRequestManager

S-INS-00320 The INGST CI shall select an Ingest Request for processing
based on the priorities of current requests so long as the
number of requests concurrently processed is less than a
threshold specified by operations staff. Requests of equal
priority will be processed first-in, first-out.

InRequestManager

S-INS-00325 The INGST CI shall determine the ingest start/stop dates
and times for all ingested data.

InRequest

S-INS-00330 The INGST CI shall determine the Data Type Identifier for a
set of ingested files, whenever the identifier was not provid-
ed in the Ingest Request.

InRequest

S-INS-00340 The INGST CI shall report status on processing of an Ingest
Request to the Error Log for the following:

InRequest

Table A-1. Requirements Trace(4 of 11)

A-5 305-CD-009-001

S-INS-00350 The INGST CI shall accept an ingest Cancellation Request
from authorized operations staff to cancel an ongoing ingest
request, specifying the ingest Request Identifier.

InRequestController

S-INS-00360 The INGST CI shall authenticate the User Identifier of oper-
ations staff submitting an ingest Cancellation Request.

InRequestController

S-INS-00364 The INGST CI shall accept an ingest Cancellation Request
from authorized applications to cancel an ongoing Ingest
Request, specifying the Request Identifier.

InRequestManager

S-INS-00369 The INGST CI shall authenticate the User Identifier of an ap-
plication submitting an ingest Cancellation Request.

InRequestManager

S-INS-00380 The INGST CI shall provide authorized operations staff the
capability to set thresholds for:

InRequestController

S-INS-00390 The INGST CI shall authenticate the User Identifier of oper-
ations staff requesting to set thresholds for concurrent ingest
processing.

InRequestController

S-INS-00392 The INGST CI shall report status on ingest Cancellation Re-
quests to the requesting operations staff and to the Error
Log for the following:

InRequest; InRequest-
Controller

S-INS-00395 The INGST CI shall report status on ingest threshold setup
Requests to the requesting operations staff and to the Error
Log for the following:

InRequest; InRequest-
Controller

S-INS-00396 The INGST CI shall report status on ingest Cancellation Re-
quests to the requesting application and to the Error Log for
the following:

InRequest; InRequest-
Manager

S-INS-00400 The INGST CI shall convert ingested data into a form ac-
cepted by the SDSRV CI / DDSRV CI, for following data
types: a. NMC GRIB data.

InGRIBData

S-INS-00403 The INGST CI shall perform the following metadata conver-
sions: a. PB5 time into ECS standard date / time format; b.
Binary integer values into ASCII integer format; c. Binary
floating point values into ASCII floating point format.

InMetadata

S-INS-00404 The INGST CI shall extract metadata from ingested data into
a form accepted by the Science Data Server / Document
Data Server, as needed, for the following categories of data:
a. Metadata parameters stored by parameter byte order and
parameter byte length; b. Metadata parameters stored in
PVL format; c. Metadata parameters stored in HDF format;
d. Dataset-specific metadata formats

InMetadata

S-INS-00405 The INGST CI shall append the following ingest-specific
metadata to metadata corresponding to ingested data:

InMetadata

S-INS-00406 The INGST CI shall check selected parameters from extract-
ed metadata to verify: a. Metadata parameters stored in a
dataset specific format,
... f. That date / time values include a valid month, day of
month, hour, minute, and second; g. That date / time values
include a year value within a range specific for that date /
time value.

InMetadata

S-INS-00408 For each data granule specified in an Ingest Request the
INGST CI shall determine by means of an Advertisement the
appropriate SDSRV CI/DDSRV CI in which to store the data
granule.

InDataServerInsertion-
Task

Table A-1. Requirements Trace(5 of 11)

A-6 305-CD-009-001

S-INS-00409 The INGST CI shall provide the capability to request storage
of a data granule by means of a Data Insert Request to the
SDSRV CI/DDSRV CI associated with the type of the data
granule.

InDataServerInsertion-
Task

S-INS-00410 The INGST CI shall provide the capability to electronically
transfer data to be ingested via the ESN into a specified ECS
storage location.

InDataTransferTask

S-INS-00415 The INGST CI shall provide an interim capability to electron-
ically transfer data to be ingested via the ESN into a speci-
fied ECS storage location for early interface testing
purposes.

InRequest

S-INS-00420 The INGST CI shall provide the capability for an external ap-
plication to transfer data to be ingested into a specified ECS
storage location.

InNetworkIngest (Release
B capability)

S-INS-00425 The INGST CI shall provide the capability to request transfer
of data from an 8mm tape.

InMediaIngest

S-INS-00430 The INGST CI shall provide the capability by means of a
Working Storage Allocation Request to the Data Server to
allocate storage space for data to be transferred to satisfy an
ingest request.

InDataTransferTask

S-INS-00440 The INGST CI shall estimate whether data may complete
transfer before the date/time prior to which the data will re-
main available.

InRequest

S-INS-00450 The INGST CI shall retry transfer of data from the External
Data Provider N times before the ingest request is failed,
where N is a number specified by operations staff.

InDataTransferTask

S-INS-00455 Operations staff shall contact the network operations staff
and External Data Provider operations staff to resolve data
transfer problems that are not handled automatically.

N/A (Operational Require-
ment)

S-INS-00460 The INGST CI shall determine the size of each file trans-
ferred to ECS whenever file sizes are specified in the corre-
sponding Ingest Request.

InFile

S-INS-00470 The INGST CI shall compare the size of each file after data
transfer to ECS with file sizes specified in the corresponding
Ingest Request.

InFile

S-INS-00480 The INGST CI shall verify that all files specified in an Ingest
Request are successfully transferred to ECS.

InDataTransferTask

S-INS-00490 The INGST CI shall log the following information in an Ingest
History Log for each received Ingest Request:

InRequest

S-INS-00500 The INGST CI shall provide operations staff the capability to
view selected entries from the Ingest History Log.

InLogMonitor

S-INS-00510 The INGST CI shall provide the capability to select Ingest
History Log entries for viewing by the following parameters:
... e. Test or operational mode.

InLogMonitor

S-INS-00520 The INGST CI shall ingest data, provided by the SDPF, from
the ESN into the LaRC DAAC, using a file transfer protocol.

InSession

S-INS-00530 The INGST CI shall ingest data, provided by the SDPF, from
physical media into the LaRC DAAC as a backup transfer
mechanism.

InMediaIngest

Table A-1. Requirements Trace(6 of 11)

A-7 305-CD-009-001

S-INS-00540 The INGST CI shall ingest data, provided by the SDPF, from
the ESN into the MSFC DAAC using a file transfer protocol.

InSession

S-INS-00550 The INGST CI shall ingest data, provided by the SDPF, from
physical media into the MSFC DAAC as a backup transfer
mechanism.

InMediaIngest

S-INS-00560 The INGST CI shall ingest Data, provided by the TSDIS,
from the ESN into the GSFC DAAC using a file transfer pro-
tocol.

InSession

S-INS-00570 The INGST CI shall ingest Data, provided by the TSDIS,
from the ESN into the MSFC DAAC using a file transfer pro-
tocol.

InSession

S-INS-00580 The INGST CI shall ingest Data, provided by the EDOS,
from the ESN into the GSFC DAAC using a file transfer pro-
tocol.

InPollingIngestSession

S-INS-00590 The INGST CI shall ingest Data, provided by the EDOS,
from the ESN into the LaRC DAAC using a file transfer pro-
tocol.

InPollingIngestSession

S-INS-00620 The INGST CI shall ingest data, provided by the DAO, from
the ESN into the LaRC DAAC using a file transfer protocol.

InPollingIngestSession

S-INS-00630 The INGST CI shall ingest data, provided by NESDIS, from
the ESN into the LaRC DAAC using a file transfer protocol.

InPollingIngestSession

S-INS-00640 The INGST CI shall ingest data, provided by the DAO, from
the ESN into the GSFC DAAC using a file transfer protocol.

InPollingIngestSession

S-INS-00670 The INGST CI shall ingest Data, provided by an SCF, from
the ESN into the MSFC DAAC using a file transfer protocol.

InNetworkIngest

S-INS-00680 The INGST CI shall ingest Data, provided by an SCF, from
the ESN into the LaRC DAAC using a file transfer protocol.

InNetworkIngest

S-INS-00720 The INGST CI shall ingest data, provided by the EOC, from
the ESN using a file transfer protocol.

InSession

S-INS-00780 The INGST CI shall ingest data, provided by the Landsat 7
Processing Facility (LPS), from the ESN into the EDC DAAC
using a file transfer protocol.

InSession

S-INS-00800 The INGST CI shall ingest Data, provided by Version 0, from
the LaRC DAAC using a file transfer protocol.

InSession; InNet-
workIngest

S-INS-00810 The INGEST shall ingest Data, provided by Version 0, from
the GSFC DAAC on 8mm tape.

InMedia

S-INS-00830 The INGEST shall ingest Data, provided by Version 0, from
the MSFC DAAC on 8mm tape.

InMedia

S-INS-00870 The ICLHW CI at the GSFC DAAC shall be capable of in-
gesting data .for EDOS/ECOM interface testing.

ICLHW

S-INS-00880 The ICLHW CI at the LaRC DAAC shall be capable of in-
gesting data for EDOS/ECOM interface testing.

ICLHW

S-INS-00990 The ICLHW CI at the LaRC DAAC shall be capable of in-
gesting data from the SPDF at the nominal daily rate speci-
fied in Table E-3 of Appendix E.

ICLHW

S-INS-01000 The ICLHW CI at the LaRC DAAC shall be capable of in-
gesting data from the SPDF at a maximum daily rate that is
three times the nominal rate specified in Table E-3 of Appen-
dix E.

ICLHW

Table A-1. Requirements Trace(7 of 11)

A-8 305-CD-009-001

S-INS-01030 The ICLHW CI at the LaRC DAAC shall be capable of in-
gesting data by network data transfer from the NESDIS, at
the nominal daily rate specified in Table E-3 of Appendix E.

ICLHW

S-INS-01040 The INGST CI at the LaRC DAAC shall be capable of receiv-
ing data from the SDPF once per day within 24 hours of the
last acquisition Client Session.

ICLHW

S-INS-01050 The ICLHW CI at the MSFC DAAC shall be capable of in-
gesting data from the SPDF at the nominal daily rate speci-
fied in Table E-3 of Appendix E.

ICLHW

S-INS-01060 The ICLHW CI at the MSFC DAAC shall be capable of in-
gesting data from the SPDF at a maximum daily rate that is
three times the nominal rate specified in Table E-3 of Appen-
dix E.

ICLHW

S-INS-01070 The ICLHW CI at the MSFC DAAC shall be capable of in-
gesting data from the TSDIS at the nominal daily rate spec-
ified in Table E-3 of Appendix E.

ICLHW

S-INS-01080 The ICLHW CI at the MSFC DAAC shall be capable of in-
gesting data from the TSDIS at a maximum daily rate that is
three times the nominal rate specified in Table E-3 of Appen-
dix E.

ICLHW

S-INS-01100 The INGST CI at the MSFC DAAC shall be capable of re-
ceiving data set from the SDPF once per day within 24 hours
of the last acquisition Client Session.

ICLHW

S-INS-01136 The ICLHW CI at the GSFC DAAC shall be capable of in-
gesting data from the DAO at the nominal daily rate specified
in Table E-3 of Appendix E.

ICLHW

S-INS-01138 The ICLHW CI at the LaRC DAAC shall be capable of in-
gesting data from the DAO at the nominal daily rate specified
in Table E-3 of Appendix E.

ICLHW

S-INS-01142 The ICLHW CI at the LaRC DAAC shall be capable of in-
gesting data from NESDIS at the nominal daily rate specified
in Table E-3 of Appendix E.

ICLHW

S-INS-60110 The ICLHW CI shall support the hardware resource require-
ments of the INGST CI and its interface requirements with
the operations staff.

ICLHW

S-INS-60120 The ICLHW CI shall have provisions for degraded modes to
meet RMA requirements.

ICLHW

S-INS-60140 The ICLHW CI shall have a fail-soft capability to meet RMA
requirements.

ICLHW

S-INS-60150 The ICLHW CI shall have provision for Initialization, Recov-
ery, and an orderly shutdown.

ICLHW

S-INS-60160 Startup and initialization of the ICLHW CI shall be completed
within 30 minutes (TBR).

ICLHW

S-INS-60170 Shutdown of the ICLHW CI shall be completed within 30
minutes (TBR).

ICLHW

S-INS-60180 The ICLHW CI shall have provision for a fault detection/ fault
isolation capability without interfering with operations.

ICLHW

S-INS-60190 The ICLHW CI shall have a status monitoring capability. ICLHW

S-INS-60210 The ICLHW CI shall support TBD transactions per day, as
specified for each release and corresponding DAAC sites.

ICLHW

Table A-1. Requirements Trace(8 of 11)

A-9 305-CD-009-001

S-INS-60310 The ICLHW CI shall be capable of operating in a 24 hour per
day, 7 days a week mode.

ICLHW

S-INS-60320 The ICLHW CI shall be configured to support the receipt of
science data function's Availability (A0) requirement of
.99900 and Mean Down Time (MDT) requirement of 2 hours
or less.

ICLHW

S-INS-60330 The ICLHW CI shall be capable of supporting system main-
tenance without impact to normal operations.

ICLHW

S-INS-60410 The ICLHW CI shall provide maintenance interfaces to sup-
port the function of System Maintenance.

ICLHW

S-INS-60420 The ICLHW CI shall provide operations interfaces to support
the function of System Maintenance.

ICLHW

S-INS-60430 The ICLHW CI platforms shall have provision for interfacing
with one or more Local Area Networks (LANs).

ICLHW

S-INS-60510 The electrical power requirements for ICLHW CI equipment
shall be in accordance with and the ECS Facilities Plan (DID
302/DV2).

ICLHW

S-INS-60540 The air conditioning requirements for ICLHW CI equipment
shall be in accordance with the ECS Facilities Plan (DID
302/DV2).

ICLHW

S-INS-60550 The grounding requirements for ICLHW CI equipment shall
be in accordance with ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60560 The fire alarm requirements for ICLHW CI equipment shall
be in accordance with ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60570 The acoustical requirements for ICLHW CI equipment shall
be in accordance with ECS Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60580 The physical interface requirements between ICLHW CI
equipment and the facility shall be in accordance with ECS
Facilities Plan (DID 302/DV2).

ICLHW

S-INS-60590 The footprint size and the physical layout of ICLHW CI
equipment shall be in accordance with the ECS Facilities
Plan (DID 302/DV2).

ICLHW

S-INS-60605 The ICLHW CI shall support test activities throughout the de-
velopment phase.

ICLHW

S-INS-60610 The following testing shall be performed on the ICLHW CI:
a. Unit Testing
b. Subsystem testing
c. Integration & Testing
d. End-to-End testing

ICLHW

S-INS-60620 Internal testing shall be performed on the ICLHW CI which
includes tests of hardware functions, and integration testing
with other SDPS subsystems.

ICLHW

S-INS-60630 Internal testing shall be performed on the ICLHW CI to verify
the internal interfaces to the Data Management, Client, Data
Server, Planning, and Data Processing subsystems.

ICLHW

S-INS-60640 Each ICLHW CI element shall be capable of supporting end-
to-end test and verification activities of the EOS program in-
cluding during the pre-launch, spacecraft verification, and in-
strument verification phases.

ICLHW

Table A-1. Requirements Trace(9 of 11)

A-10 305-CD-009-001

S-INS-60650 The ICLHW CI shall be capable of being monitored during
testing.

ICLHW

S-INS-60710 The ICLHW CI shall contain the storage and interface re-
sources to support the ingest functions for the TRMM mis-
sion instruments of CERES and LIS.

ICLHW

S-INS-60720 The ICLHW CI at the GSFC DAAC shall be sized to support
TBD bytes/second at the electronic data ingest interface to
support the TRMM mission.

ICLHW

S-INS-60725 The ICLHW CI at the LaRC DAAC shall be sized to support
TBD bytes/second at the electronic data ingest interface to
support the TRMM mission.

ICLHW

S-INS-60730 The ICLHW CI at the MSFC DAAC shall be sized to support
TBD bytes/second at the electronic data ingest interface.

ICLHW

S-INS-60735 The ICLHW CI at the GSFC DAAC shall be sized to store
and maintain TBD bytes of data for a 1 year period of time.

ICLHW

S-INS-60740 The ICLHW CI at the LaRC DAAC shall be sized to store and
maintain TBD bytes of data for a 1 year period of time.

ICLHW

S-INS-60745 The ICLHW CI at the MSFC DAAC shall be sized to store
and maintain TBD bytes of data for a 1 year period of time.

ICLHW

S-INS-60750 The ICLHW CI at the GSFC DAAC shall be sized to tempo-
rarily store TBD bytes of ingest data to support the TRMM
mission.

ICLHW

S-INS-60755 The ICLHW CI at the LaRC DAAC shall be sized to tempo-
rarily store TBD bytes of ingest data to support the TRMM
mission.

ICLHW

S-INS-60760 The ICLHW CI at the MSFC DAAC shall be sized to tempo-
rarily store TBD bytes of ingest data.

ICLHW

S-INS-60765 The ICLHW CI shall have a switchover time from the primary
science data receipt capability to a backup capability of 15
minutes or less.

ICLHW

S-INS-60810 The operating system for each UNIX platform in the ICLHW
CI shall conform to the POSIX.2 standard.

ICLHW

S-INS-60820 The ICLHW CI POSIX.2 compliant platform shall have the
following utilities installed at a minimum: perl, emacs, gzip,
tar, imake, prof, gprof, nm.

ICLHW

S-INS-60830 The ICLHW CI POSIX.2 compliant platform shall have the
following POSIX.2 user Portability Utilities installed at a min-
imum: man, vi.

ICLHW

S-INS-60840 The ICLHW CI POSIX.2 compliant platform shall have the
following POSIX.2 Software Development Utilities installed
at a minimum: make.

ICLHW

S-INS-60850 The ICLHW CI POSIX.2 compliant platform shall have the
following POSIX.2 C-Language Development Utilities in-
stalled at a minimum: lex, yacc.

ICLHW

S-INS-60860 The ICLHW CI POSIX.2 compliant platform shall have the
following Unix shells installed at a minimum: C shell, Bourne
shell, Korn shell.

ICLHW

S-INS-60870 The ICLHW CI POSIX.2 compliant platform shall have on-
line documentation or printed documentation for each in-
stalled tool.

ICLHW

Table A-1. Requirements Trace(10 of 11)

A-11 305-CD-009-001

S-INS-60880 The ICLHW CI POSIX.2 compliant platform shall have in-
stalled one or more development environment supporting
the following languages:

ICLHW

S-INS-60890 Each development environment associated with the
POSIX.2 compliant platform in the ICLHW CI shall have the
capability to compile and link strictly conformant POSIX-
compliant source code.

ICLHW

S-INS-60895 Each development environment associated with the
POSIX.2 compliant platform in the ICLHWCI shall have an
interactive source level debugger for ECS supported lan-
guages.

ICLHW

Table A-1. Requirements Trace(11 of 11)

A-12 305-CD-009-001

B-1 305-CD-009-001

Appendix B. Program Design Language (PDL)

The Ingest Program Design Language (PDL) for non-trivial operations is included in this appen-
dix. The PDL is sorted by object class and by object class operation. C++ syntax is used to identify
object class operations (e.g., InBOMetadata::Preprocess indicates the Preprocess operation of the
InBOMetadata object class). The PDL follows the standards set up in the PDL Program Instruction
addendum to the Software Development Plan.

InBOMetadata::Preprocess

Call InMetadataTool::PGS_MET_INITt o load target MCF into memory
Call InFile::Read to read metadata file into memory
DoWhile(Call InMetadataTool::GetNext=True)

Call InSourceMCF::GetParInfo to obtain location of value associated with target
parameter name
Read value from appropriate location
If (Data is Binary) Then
Call ConvertBintoASCII to map binary expression to corresponding ASCII string via Look

Up
Table
EndIf
Call InMetadataTool::PGS_MET_SET to set the value of attribute in target MCF

End DoWhile

int InDAN::Check(char *DAAmsgPtr)

Open the DAA Error File; the file would contain one of the following code:
1. Accepted
2. Invalid DAN Sequence number
3. Invalid File Count
4. Invalid Data Service
5. Invalid Aggregate Length
6. Invalid Data Type
7. Invalid Directory
8. Invalid Time Stamp Format
9. Invalid Generation Time Format
10. Invalid File Size Field
11. Invalid Time/Date Format

Read the DAA Error code from the DAA file
Close the DAA Error File
if DAA Error code is 1-5
 Construct the InShortDAA class

B-2 305-CD-009-001

 Call InShortDAA.FillDAA() to package the DAA message using DAA Error code
 and myDANSeqNo

else
 For each entry in myDataTypeList[]

 Assign DAA Error code to DAAStatus[i]
 Assign myDataTypeList[i].DataTypeId to DataType[i]
 Assign myDataTypeList[i].DatDescriptor to DataDescriptor[i]

 End for
 Construct the InLongDAA class
 Call InLongDAA.FillDAA() to package the DAA message using DAAStatus[],

 DataType[],DataDescriptor[], myDataTypeCount, and myDANSeqNo
endif
return

InDAN::InDAN(char *DANFile, char *DAAmsgPtr, int status)

Get the total byte size of DANFile
Allocate PVL-Buffer with total DANFile byte size
Open DANFile
Read the whole DANFile into PVL-Buffer
Close DANFile
Call ParsePVL() passing the PVL-Buffer address and the DANFile size to
 extract PVL keywords and Keyword-Values from the PVL-Buffer
Call Check() to verify the DAN components and fills the verification
 results in the DAA data message

InDAN::InDAN(DANmsg *DANmsgPtr, char *DAAmsgPtr, int DAAlength, int status)

Calculate the total bytes of MsgHeader, EDU_Label, DAN_Label and
 assign to HdrLen
Set PVLptr to HdrLen byte after the first byte of DANmsgPtr
Extract the TotalMessageLength from MsgHeader
Calculate the PVLlen by subtracting TotalMessageLength from HdrLen
Call ParsePVL() passing the PVLptr and PVLlen
Call Check() to verify the DAN components and fills the verification
 results in the DAA message
return

int InDAN::ExtractKeyword(char *PVL_stmt, char *Keyword, char *Keyword_Value)

*** Task complete by parser() ***
Search for 1st alphanumeric position in PVL_Stmt and assign to StartPtr
Set PVL_Stmt to Key_StartPtr
Search for 1st non-alphanumeric position in PVL_Stmt and assign to EndPtr
Extract StartPtr to EndPtr from PVL_Stmt and assign to Keyword

B-3 305-CD-009-001

Call ExtractValue to extract the keyword value
return

int InDAN::ExtractPVLStmt(char* PVL_Buffer, char *PVL_stmt, int PVL_Stmt_Len)

*** Task complete by parser() ***
Search for 1st alphanumeric position in PVL_Buffer and
 assign to StartPtr
Search for ';' in PVL_Buffer and assign pocation to EndPtr and PVL_Stmt_Len
Extract PVL_Stmt from PVL-Buffer starting StartPtr byte to Stmt_EndPtr -1
return

int InDAN::ExtractValue(char *PVL_stmt, char *Keyword_Value)

Task complete by parser()
Search for 1st alphanumeric position after '=' in PVl_stmt and assign
 position to StartPtr
Search for 1st non-alphanumeric position after StartPtr and assign
 position to EndPtr
Extract StartPtr to EndPtr from PVL_Stmt and assign to Keyword-Value
return

int InDAN::ExtractValue(char *PVL_Stmt, char *Keyword_Value)

 Task complete by parser()
 return SUCCESS;

int InDAN::FillData (char *IngestType, char *ParsedKeywords)

Copy DAN information from daninfo data structure to the private
 member data structure.

return

int InDAN::ParsePVL(char* PVL_Buffer, int PVL_Len)

If PVL_Len is greater than 0 then call parse()
Call FillDAN() to put the extracted PVL statements into the

InDAN class data memory
return

int InDAN::GetDANSeq(void)

return DANSeqNum

B-4 305-CD-009-001

InDataPreprocessTask::Preprocess

Call InDataPreprocessTask::InDataPreprocessTask to create a list to contain files to be inserted
into the Data Server Subsystem
Call InDataType::Preprocess to begin preprocessing of specific data type

InDataServerInsertionTask::SendInsert

Call Advertising to locate appropriate Data Server to insert data
Call DsCIESDTReferenceCollector::DsCIESDTReferenceCollector to set up Data Server session
Call DsCICommand::DsCICommand to instantiate command object and reference advertisement
Call DsCICommand::SetParameters to include list of file types to be inserted
Call DsCIRequest::DsCIRequest to instantiate object and reference associated Command objects
Call DsCIRequest::SubmitRequest to submit request

InDataType::Preprocess

Call InDataTypeTemplate::GetDInfo to obtain a list of all required files
Do While(Call InDataPreprocessList::GetNext=True)

Increment File Counter
Store File Name
Get file type of File Name
Store File Type
Increment appropriate file type counter

End Do While

If (required file types exist) Then
Do While (Counter < number of files)

Call InFileTypeTemplate::GetFTInfo to obtain file type information
Instantiate appropriate preprocessing specialization
If(File Type= Metadata)

Instantiate DsCIDescriptor
Call DsCIDescriptor:GetMCF to obtain target MCF

EndIf
End Do While
Do While(Counter < number of files)

Call appropriate preprocess operation
Call InMetadataTool::PGS_MET_WRITE
Instantiate a new file
If(File Type=Metadata) Then

Call DsCIDescriptor::Validate
If (Validate Fails) Then

Log Errors
Flag Metadata

EndIf

B-5 305-CD-009-001

End If
Else
Send Failure status back to InDataPreprocessTask
EndIf

InHDFMetadata::Preprocess()

Call InMetadataTool::PGS_MET_INIT to read target MCF into memory

Call appropriate HDF I/O tools to read file metadata

Identify HDF metadata object

DoWhile(Call InMetadataTool::GetNext=True)

Compare target parameter name with file string

Call InMetadataTool::PGS_MET_SET to set the value of attribute in target MCF

End DoWhile

int InLongDAA::FillDAA (int DAAStatus[], char *DataType[], char *DataDescriptor[],
 int DataTypeCount, int DANSeqNo)

If (DANSeqNO is greater than 0)
 Assign DANSeqNo to myLongDAA.DANSequenceNum
 Assign DataTypeCount to myLongDAA.FileGroupCount
 Init MsgLen to LongDAAmsgHeader
 For i = 1 to DataTypeCount
 Assign DAAStatus[i] to myLongDAA.FileGroup[i].Disposition
 Assign DataType[i] to myLongDAA.FileGroup[i].DataType
 Assign DataDescriptor[i] to myLongDAA.FileGroup[i].Descriptor

 Increment MsgLen by the string length of DataType[i]
 and DataDescriptor[i]
 End for
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the least significant 3 bytes of MsgLen to myLongDAA.MsgLength
return

int InLongDAA::GetDAA(LongDAAmsg *DAAmsg, int DAAmsgLen)

Assign myLongDAA to DAAmsg
Call InMessage::GetMsgLength() and assign to DAAmsgLen
If (DDNmsgLen is <= zero)
 write Empty DAA data message error into the event log
Endif

B-6 305-CD-009-001

return

InLongDAA::InLongDAA()

Assign the lease significant byte of InCLongDAAType to myLongDAA.MsgType
return

int InLongDAA::FillDAA (int DAAStatus[], char *DataType[], char *DataDescriptor[],
 int DataTypeCount, int DANSeqNo)

If (DANSeqNO is greater than 0)
 Assign DANSeqNo to myLongDAA.DANSequenceNum
 Assign DataTypeCount to myLongDAA.FileGroupCount
 Init MsgLen to LongDAAmsgHeader
 For i = 1 to DataTypeCount
 Assign DAAStatus[i] to myLongDAA.FileGroup[i].Disposition
 Assign DataType[i] to myLongDAA.FileGroup[i].DataType
 Assign DataDescriptor[i] to myLongDAA.FileGroup[i].Descriptor

 Increment MsgLen by the string length of DataType[i]
 and DataDescriptor[i]
 End for
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the least significant 3 bytes of MsgLen to myLongDAA.MsgLength
return

int InLongDAA::GetDAA(LongDAAmsg *DAAmsg, int DAAmsgLen)

Assign myLongDAA to DAAmsg
Call InMessage::GetMsgLength() and assign to DAAmsgLen
If (DDNmsgLen is <= zero)
 write Empty DAA data message error into the event log
Endif
return

InLongDAA::InLongDAA()

Assign the lease significant byte of InCLongDAAType to myLongDAA.MsgType
return

int InLongDDN::FillDDN (int DDNStatus, char *FileDir[], char *FileId[],
 int FileCount, int DANSeqNo)

If (DANSeqNo is greater than 0)

B-7 305-CD-009-001

 Assign DANSeqNo to myLongDDN.DANSeqNo
 Assign FileCount to myLongDDN.FileCount
 Init MsgLen to byte size of LongDDNmsgHeader
 For i = 1 to FileCount
 Assign DDNStatus[i] to myLongDDN.File[i].Disposition
 Assign FileDir[i] to myLongDDN.File[i].Directory
 Assign FileId[i] to myLongDDN.File[i].FileName

 Increment MsgLen by the string length of FileDir[i] and FileId[i]
 End for
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the least significant 3 bytes of MsgLen to myLongDDN.MsgLength
return

int InLongDDN::GetDDN(LongDDNmsg *DDNmsg, int DDNmsgLen)

Assign myLongDDN to DDNmsg
Call InMessage::GetMsgLength() and assign to DDNmsgLen
If (DDNmsgLen is <= zero)
 write Empty DAA data message error into the event log
Endif
return

InLongDDN::InLongDDN()

Assign the lease significant byte of InCLongDDNType to myLongDDN.myMsgType
Return

int InMessage::GetMsgLength(char *MsgPtr)

If (MsgPtr is not NULL)
 Move 2nd to 4th byte from MsgPtr and assign to MsgLen
else
 Assign zero to MsgLen
endif
return MsgLen

InMessage::InMessage()

Return

InPVMetadata::Preprocess()

Call InMetadataTool::PGS_MET_INIT to load target MCF into memory

B-8 305-CD-009-001

DoWhile(Call InMetadataTool::GetNext=True)
Call InSourceMCF::GetParInfo to match target parameter name with source parameter

name
Call InFile::Read to read metadata file into memory
DoUntil(Source Parameter=File String)

Compare Source Parameter with File String
End Do Until
Extract value from parameter -value statement
Call InMetadataTool::PGS_MET_SET to set the value of attribute in target MCF

End DoWhile

int InRequest::InRequest (DANmsg *DANmsgPtr)

Call InRequest::Check () to parse the PVL contents and check their validity
If (check is successful)

Fill InRequest attributes
Call InRequestProcessHeader::InRequestProcessHeader to checkpoint request processing at-

tributes
Call InRequestProcessData::InRequestProcessData to checkpoint request data type processing

attributes
Call InRequestFileInfo::InRequestFileInfo to checkpoint request file processing attributes
Call InRequestSummaryHeader::InRequestSummaryHeader to checkpoint request summary

attributes
Call InRequestSummaryData::InRequestSummaryData to checkpoint data type summary at-

tributes
Return the object pointer (OID) for this object

Else
Return error status

endif

InRequest::InRequest (char *DANFile)

Construct InDAN class using pointer to the DAN file
If (InDAN construction indicates success)

Call InDAN::FillDAN() to read the DAN contents
Call InRequest::Check () to parse the PVL contents and check their validity
If (check is successful)

 Fill InRequest attributes
Call InRequestProcessHeader::InRequestProcessHeader to checkpoint request processing

attributes
Call InRequestProcessData::InRequestProcessData to checkpoint request data type pro-

cessing attributes
Call InRequestFileInfo::InRequestFileInfo to checkpoint request file processing attributes
Call InRequestSummaryHeader::InRequestSummaryHeader to checkpoint request sum-

mary attributes

B-9 305-CD-009-001

Call InRequestSummaryData::InRequestSummaryData to checkpoint data type summary
attributes

Return the object pointer (OID) for this object
Else

Return error status
endif

Else
Return error status

end if

int InRequest::ProcessRequest(void)

Call InTransferDataTask to transfer files specified in the request to ECS working storage space
If (transfer is successful)

Call InRequest::ChangeState to update the substate of the request to "data transferred"
Call InPreprocessingTask to extract metadata, check the metadata, and perform conver-

sions and reformatting
If (preprocessing is successful)

Call InRequest::ChangeState to update the substate of the request to "data preprocessed"
Call InPreprocessingTask::InsertData to request insert of data into the Data Server
If (insert request is accepted)

Call InRequest::ChangeState to update the critical state of the request to "data insert
submitted"

Wait for the Data Server to respond (timeout if Data Server does not respond within op-
erator-tunable threshold)

If (insert response received)
Call InRequest::ChangeState to update the critical state of the request to "data insert

completed"
endif

endif
endif

endif
Submit a DDN message to InSession
Wait for InSession to respond (timeout if InSession does not respond within operator-tunable

threshold)
Invoke the destructor to delete the request

int InRequest::Cancel(void)

Call GetStatus() to get the current state of the request
If (state indicates in "data transfer")
 Call InDataTransferTask::CancelTransfer() to cancel data transferring
else if (state indicates in "data preprocessing")
 Call InDataPreprocessTask::CancelPreprocess() to cancel data preprocessing
else if (state indicates in "data insertion submitted")

B-10 305-CD-009-001

 Call InDataInsertionTask::CancelInsert() to cancel data insertion
endif
return status

int InRequest::ChangeState(char *NewState)

Set myRequestState to NewState
Checkpoint NewState to InRequestProcessHeader
return

InRequestInfo::AddRequest(int DANSeqNum, int RequestId)

Check for duplicate DAN
If duplicate DAN not found
 Allocate memory for the new entry for the RequestInfo List
 Fill the new entry with RequestInfo
 Increment the Request count
EndIf
return

InRequestInfo::DeleteRequest(int DANSequenceNum)

set FOUND to false
for each RequestInfo in the RequestInfo List
 if RequestInfo[i].DANSequenceNum = DANSequenceNum

 set FOUND to true
 exit the loop

 endif
end for
if FOUND is true
 delete i-th RequestInfo entry from the list
 decrement the RequestInfo count
else
 return no match
endif
return

InRequestInfo::GetRequestCount(int *RequestCount)

Get the total number of requests from the list

InRequestInfo::InRequestInfo()

Initialize the request list

B-11 305-CD-009-001

InRequestInfo::InRequestInfo()

Initialize the request list

InRequestInfo::~InRequestInfo()

Delete any dynamically allocated memory

InRequestInfo::ListRequests()

For each request in the list
 print DANSeqNum and RequestId
 END for
 Print Total number of requests
 return

InRequestInfo::operator==(const InRequestInfo &r)

Defines an element in the RequestInfo list to be equal
 only if the DANSeqNum and RequestId match.

InRequestInfo::SearchRequest(int DANSequenceNum)

Set Found to FALSE
For each entry in the RequestInfo List
 if RequestInfo.DANSequenceNUm = DANSequenceNum

 set FOUND to TRUE
 exit loop
 endif
endfor
return

int InRequestList::AddRequest(int *RequestID)

Add RequestID to list based on priority
Checkpoint RequestList to data base
return

int InRequestList::DeleteRequest(int *RequestID)

Delete RequestID from list
Checkpoint RequestList to data base
return

int InRequestList::SearchRequest(int *RequestID)

B-12 305-CD-009-001

Find entry with specified RequestID in list
return

int InRequestManager_ C::CancelRequest(int* RequestID)

Call InRequest::Cancel () to cancel the request at its current state
return

DCEObjRefT* InRequestManager_ C::CreateRequest(DANmsg* DANmsgPtr)

Invoke the InRequestManager_S::CreateRequest service to create a distributed request object
return

DCEObjRefT* InRequestManager_S::CreateRequest(DANmsg* DANmsgPtr)

Create an InRequest object
return

int InRequestManager_S::InRequestManager()

Call InRequestManager_S::RestoreRequestList to determine if checkpointed requests are avail-
able and to resubmit them as needed

Listen for request creation or cancellation requests
If (a creation request is received)

Call InExternalDataProviderThreshold::GetIngestPriority to get the priority for the specified
request

Create a pthread for the InRequest object
Call InRequest::InRequest to create a new request
Return to listening for a request

Elseif (a cancel request is received)
Call InRequestManager::CancelRequest to cancel the request

endif
return

int InRequestManager_S::RestoreRequestList()

Call InRequestProcessHeader::SearchTable to determine whether request information is check-
pointed in an active state ("request created", "data transferred", "data preprocessed", "data in-
sert submitted", "data insert completed")

For each checkpointed request
Call InExternalDataProviderThreshold::GetIngestPriority to get the priority for the specified

request
Create a pthread for the InRequest object
Call InRequest::InRequest to create a new request

B-13 305-CD-009-001

endfor
return

InServer::InServer()

Initialize the SessionCount to zero.

InServer::StartServer()

Setup Ingest RPC Server:
 Create instance of the InServer object class
 (UUID can be automatically created by constructor or passed to

 the constructor)
 Register Object (Place info about the object in the private state)
 Listen and wait for client request
return

InSession::InSession()

Initialize the default constructor prototype

InSession::InSession(char *GatewayBH, char *ClientId, int SessionId)

Initialize the alternate constructor

InSession::~InSession()

Delete any dynamically allocated memory

InSession::InitSessServer(char *SessGWBH)

Setup Ingest RPC Session Server:
 Create instance of the InSession object class
 (UUID can be automatically created by constructor or passed to

 the constructor)
 Register Object (Place info about the object in the private state)
 Listen and wait for client request(DAN, DDA...)
return

InSession::ProcessRequest(DANmsg *DAN, DAAmsg *DAA)

int InSession::ProcessRequest(DANmsg *DAN, DAAmsg *DAA)

B-14 305-CD-009-001

 Extract DAN sequence #
 Call SearchRequest to search for duplicate request
 If DAN Sequence # NOT found
 Create new Request to verify request contents, to get the request ID and
 DAN sequence # and to add request onto the Ingest Request List
 Package RequestInfo: Request ID, Sequence #
 Add RequestInfo to the Session RequestInfo List
 Package DAA based on the request verification results
 else
 Log Duplicate DAN - Inform OPERATOR
 Package DAA with appropriate response (Duplicate DAN Sequence #)
 endif
 return

InSessionInfo::AddSession(char *NewClient, int SessPID)

Append Client and Session PID Information to file
Increment number of sessions open
return

InSessionInfo::DeleteSession(int SessionID)

set FOUND to false
open Ingest Session file
while not found or end-of-file not reached
 read a record
 match the session id field in the record
 If Session ID found
 delete the record from the file
 set FOUND to true
 decrement number of sessions active
 log client/session deletion
 else
 read next record
 endif
endwhile
If not found
 log error - trying to delete non-existant session
endif
return (found)

InSessionInfo::ListSessions(void)

Open Session List file
for each session in the session file

B-15 305-CD-009-001

 print SessionId and ClientID
end for
close file
return

InSessionInfo::SearchSession (char *CID)

set FOUND to false
open Ingest Session file
while not found or end-of-file not reached
 read a record
 match the ClientID field in the record
 If Client ID found
 set FOUND to true
 endif
endwhile
close file
return FOUND

InSessionInfo::SearchSession (int SessionId)

set FOUND to false
open Ingest Session file
while not found or end-of-file not reached
 read a record
 match the session id field in the record
 If Session ID found
 set FOUND to true
 endif
endwhile
close file
return FOUND

int InShortDAA::FillDAA(int DAAStatus, int DANSeqNo)

If (DANSeqNo is greater than 0)
 Assign DANSeqNo to myShortDAA.DANSequenceNum
 Assign DAAStatus to myShortDAA.Disposition
Else
 Write invalid DAN Sequence Number into the event log
End if
Assign the byte size of ShortDAAmsg structure to ShortDAAmsgLen
Assign the least significant 3 byte of ShortDAAmsgLen
 to myShortDAA.MsgLength
return

B-16 305-CD-009-001

int InShortDAA::GetDAA(ShortDAAmsg *DAAmsg, int DAAmsgLen)

Assign myShortDAA to DAAmsg
Call InMessage::GetMsgLength() and assign to DAAmsgLen
If (DAAmsgLen is <= zero)
 write Empty DAA data message into the event log
Endif
return

InShortDAA::InShortDAA()

Assign the lease significant byte of InCShortDAAType to myShortDAA.MsgType
Return

InShortDDN::FillDDN(int DDNStatus, int DANSeqNo)

If (DANSeqNo is greater than 0)
 Assign DANSeqNo to myShortDDN.DANSequenceNum
 Assign DDNStatus to myShortDDN.Disposition
Else
 write invalid DAN Sequence Number into the event log
End if
Assign the byte size of ShortDDNmsg structure to ShortDDNmsgLen
Assign the least significant 3 byte of ShortDDNmsgLen
 to myShortDDN.MsgLength
return

InShortDDN::GetDDN(ShortDDNmsg *DDNmsg, int DDNmsgLen)

Assign myShortDDN to DDNmsg
Call InMessage::GetMsgLength() and assign to DDNmsgLen
If (DDNmsgLe is <= zero)
 write Empty DAA data message into the event log
Endif
return

InShortDDN::InShortDDN()

Assign the lease significant byte of InCShortDDNType to myShortDDN.MsgType
Return

AB-1

Acronyms and Abbreviations

ADC Affiliated Data Center

AM-1 EOS AM Project (morning spacecraft series)

APID Application Identifier

ASCII American Standard Code for Information Interchange

ASF Alaska SAR Facility (DAAC)

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATL Automated Tape Library

ATM Asynchronous Transfer Model

AVHRR Advanced Very High-Resolution Radiometer

CDR Critical Design Review

CDRL Contract Data Requirements List

CD-ROM Compact Disk - Read Only Memory

CERES Clouds and Earth's Radiant Energy System

CGI Common Gateway Interface

CI Configuration Item

CIESIN Consortium for International Earth Science Information Network

COTS Commercial-off-the-shelf

CPU Central Processing Unit

CSC Computer System Components

CSCI Computer Software Configuration Item

CSMS Communications and Systems Management Segment (ECS)

DAA DAN Acknowledge

DAAC Distributed Active Archive Center

DAN Data Availability Notice

DAO Data Assimilation Office

DBMS Database Management System

DCE Distributed Computing Environment (OSF)

DDA Data Delivery Acknowledgment

DDN Data Delivery Notice

DID Data Ingest Distribution

DID Data Item Description

DIPHW Distribution and Ingest Peripheral Management HWCI

AB-2

DPRHW Data Repository HWCI

DPS Data Processing Subsystem

DSS Data Server Subsystem

EBnet EOSDIS Backbone network

Ecom EOSDIS communications system

ECS EOSDIS Core System

EDC EROS Data Center (DAAC)

EDOS EOS Data and Operations System

EDR Environmental Data Record

EGS EOS Ground System

EOC EOS Operations Center (ECS)

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FNL FinaL Analysis and Forecast System, Global Analysis

FSMS File Storage Management System

FIP File Transfer Protocol

GB Gigabyte

GDAO GSFC Data Assimilation Office

GPCP Global Precipitation Climatology Project

GPI GOES Precipitation Index

GRIB Gridded Binary

GSFC Goddard Space Flight Center

GUI Graphic User Interface

GVTRMM Ground Verification Tropical Rainfall Measuring Mission

H/K Housekeeping

HDF Hierarchical Data Format

HiPPI High Performance Parallel Interface

HTML Hyper-Text Markup Language

HTTP Hypertext Transport Protocol

HWCI Hardware Configuration Item

I/F Interface

I/O Input/Output

IAS Instrument Activity Specification

ICD Interface Control Document

AB-3

ICLHW Ingest Client HWCI

ID Identification

IDR Interim Design Review

IGS International Ground Station

IP International Partners

IR-1 Interim Release-1

IRD Interface Requirements Document

ISSCP International Satellite Cloud Climatology Project

JPL Jet Propulsion Laboratory

L0 Level-0

LaRC Langley Research Center (DAAC)

LIS Lightning Imaging Sensor

LOM Logical Object Model

Mb Mega bit

MB Mega byte

Mbps Mega bits per second

MCF Metadata Configuration File

MISR Multi-Angle Imaging SpectroRadiometer

MOC Mission Operations Center

MODIS Moderate-Resolution Imaging SpectroRadiometer

MRF Medium Range Forecast

MSFC Marshall Space Flight Center

MSS Management Subsystem

MTBF Mean Time Between Failure

MTTR Mean Time To Restore

NESDIS National Environmental Satellite, Data, and Information Service (NOAA)

NMC National Meteorological Center (NOAA)

NMC Network Management Center

NOAA National Oceanic and Atmospheric Administration

NOLAN Nascom Operational Local Area Network

NSIDC National Snow and Ice Data Center (DAAC)

OODCE Object Oriented DCE

ORNL Oak Ridge National Laboratory (DAAC)

PDL Program Design Language

PDR Preliminary Design Review

PDS Production Data Set

AB-4

POAM-II Polar Ozone and Aerosol Experiment

PS Project Scientist

PVL Parameter Value Language

QA Quality Assurance

RAID Redundant Array of Inexpensive Disks

RID Review Item Discrepancy

RMA Reliability, Maintainability, Availability

RPC Remote Procedure Call

SAGE II Stratospheric Aerosol and Gas Experiment

SCF Science Computing Facility

SCSI Small Computer System Interface

SDPF Sensor Data Processing Facility (GSFC)

SDPS Science Data Processing Segment (ECS)

SDR System Design Review

SDSRV Science Data Server CSCI

SFDU Standard Format Data Unit

SMC System Management Center (ECS)

SMP Symmetric Multi-Processing

SNMP Simple Network Management Protocol

SSM/I Special Sensor for Microwave/Imaging

STMGT Storage Resource Management

TBD To Be Determined

TBR To Be Replaced

HDF Hierarchical Data Format

TBS To Be Supplied

TCP/IP Transmission Control Protocol/Internet Protocol

TDRSS Tracking and Data Relay Satellite System

TOMS Total Ozone Mapping Spectrometer

TRMM Tropical Rainfall Measuring Mission (joint US-Japan)

TSDIS TRMM Science Data and Information System

UR Universal Referencev

UUID Universal Unique Identifier

W/S Workstation

WKSHW Working Storage HWCI

WWW World Wide Web

GL-1 305-CD-009-001

Glossary

advertisement A text description that announces the availability of ECS data or ser-
vices to ECS users.

advertising service Through the advertising service, users can search and query de-
scriptions of the data and services available in the network. This
data is called advertisements. It is prepared by the data and/or ser-
vice providers.

affiliated data center
(ADC)

A facility not funded by NASA that processes, archives, and distrib-
utes Earth science data useful for global change research, with
which a working agreement has been negotiated by the EOS pro-
gram. The agreement provides for the establishment of the degree
of connectivity and interoperability between EOSDIS and the ADC
needed to meet the specific data access requirements involved in a
manner consistent and compatible with EOSDIS services. Such
data-related services to be provided to EOSDIS by the ADC can
vary considerably for each specific case.

ancillary data Data other than instrument data required to perform an instrument’s
data processing. They include orbit data, attitude data, time infor-
mation, spacecraft engineering data, calibration data, data quality
information, and data from other instruments.

application identifier
(APID)

The number assigned by spacecraft mission management that rep-
resents the on-board application that generated the telemetry data.

application software Programs designed for specific functions, such as payroll, accounts
payable, inventory control, or property management, generally con-
sisting of source code and object code databases, procedures, and
documentation

archive tape library Archive robotics unit

authorized user see user, authorized

availability A measure of the degree to which an item is in an operable and com-
mittable state at the start of a "mission" (a requirement to perform its
function) when the "mission" is called for an unknown (random) time.
(Mathematically, operational availability is defined as the mean time
between failures divided by the sum of the mean time between fail-
ures and the mean down time [before restoration of function].)

baseline Identification and control of the configuration of software (i.e. select-
ed software work products and their descriptions) at given points in
time.

binary file A data file whose contents are in binary form (i.e., not encoded)

browse data product Subsets of a larger data set, other than the directory and guide, gen-
erated for the purpose of allowing rapid interrogation (i.e., browse)
of the larger data set by a potential user. For example, the browse
product for an image data set with multiple spectral bands and mod-
erate spatial resolution might be an image in two spectral channels,
at a degraded spatial resolution. The form of browse data is gener-
ally unique for each type of data set and depends on the nature of
the data and the criteria used for data selection within the relevant
scientific disciplines.

GL-2 305-CD-009-001

calibration The collection of data required to perform calibration of the instru-
ment science data, instrument engineering data, and the spacecraft
engineering data. It includes pre-flight calibration measurements,
in-flight calibrator measurements, calibration equation coefficients
derived from calibration software routines, and ground truth data
that are to be used in the data calibration processing routine.

CCSDS recommendations Recommendations for spacecraft telemetry and telecommand pack-
et format and protocol made by the Consultative Committee for
Space Data Systems.

client A software component that sends or issues service requests to ECS
servers or service providers; a requester of service.

client session see SESSION

commercial off the shelf
(COTS)

COTS is a product, such as an item, material, software, component,
subsystem, or system, sold or traded to the general public in the
course of normal business operations at prices based on estab-
lished catalog or market prices (see FAR 15.804-3(c) for explana-
tion of terms.

component The next lower functional subdivision below "subsystem" in the ECS
functional hierarchy.

computer software com-
ponent (CSC)

A distinct part of a computer software configuration item. CSCs may
be further decomposed into other CSCs and computer software
units.

computer software config-
uration item (CSCI)

A configuration item comprised of computer software components
and computer software units.

configuration The functional and physical characteristics of hardware, firmware,
software or a combination thereof as set forth in technical document
and achieved in a product.

configuration item (CI) An aggregation of hardware, firmware, software or any of its discrete
portions, which satisfies an end use function and is designated for
configuration management.

Critical Design Review
(CDR)

A detailed review of the element/segment-level design, including
such details as program design language for key software modules,
and element interfaces associated with a release.

DAAC see Distributed Active Archive Center

DAAC-unique Functions and capabilities provided by the DAAC beyond those pro-
vided by the core system. The functions will be integrated with ECS
via APIs for other similar mechanisms. Examples of DAAC-unique
functions include visualization, specialized interfaces, and data set-
unique functionality.

Data Archive And Distribu-
tion System (DADS)

Included in each DAAC and responsible for archiving and distribu-
tion of EOS data and information.

data availability acknowl-
edgment

Status return when a data availability notice cannot be satisfied
(e.g., due to a validation error or transmission error).

data availability notice Notice form a client of data available for ingest.

data availability schedule Data availability schedule is a schedule indicating the times at which
specific data sets will be available from remote DADS, EDOS, the
international partners, the ADCs, and other data centers for inges-
tion by the collocated DADS. The schedules are received directly by
the PGS.

GL-3 305-CD-009-001

data center A facility storing, maintaining, and making available data sets for ex-
pected use in ongoing and/or future activities. Data centers provide
selection and replication of data and needed documentation and, of-
ten, the generation of user tailored data products.

data ingest request Request to ingest data.

data product Data products consist of Level 0 data or Level 1 through Level 4 data
products obtained by the PGS from the collocated DADS. These
represent the primary input to the product generation process.

A collection (1 or more) of parameters packaged with associated an-
cillary and labeling data, uniformly processed and formatted. Typi-
cally uniform temporal and spatial resolution. (Often the collection
of data distributed by a data center or subsetted by a data center for
distribution.) There are two types of data products:
a. Standard: A data product produced at a DAAC by a com-
munity consensus algorithm. Typically produced for a wide commu-
nity. May be produced routinely or on-demand. If produced
routinely, typically produced over most or all of the available inde-
pendent variable space. If produced on-demand, produced only on
request from users for particular research needs typically over a lim-
ited range of independent variable space.
b. Special: A data product produced at a science computing
facility by a research status algorithm. May migrate to a community
consensus algorithm at a later point. If adequate community inter-
est, may be archived and distributed by a DAAC.

data product levels Raw data--Data in their original packets, as received from the ob-
server, unprocessed by EDOS.
• Level 0--Raw instrument data at original resolution, time ordered,
with duplicate packets removed.
• Level 1A--Reconstructed unprocessed instrument data at full res-
olution, time referenced, and annotated with ancillary information,
including radiometric and geometric calibration coefficients and geo-
referencing parameters (i.e. platform ephemeris) computed and ap-
pended, but not applied to Level 0 data.
• Level 1B--Radiometrically corrected and geolocated Level 1A data
that have been processed to sensor units.
• Level 2--Derived geophysical parameters at the same resolution
and location as the Level 1 data.
• Level 3--Geophysical parameters that have been spatially and/or
temporally re-sampled (i.e., derived from Level 1 or Level 2 data).
• Level 4--Model output and/or results of lower level data that are not
directly derived by the instruments.
Data Levels 1 through 4 as defined in the EOS Data Panel Report.
Consistent with the Committee on Data Management and Compu-
tation and Earth Science and Applications Data System definitions.

data server Either the data server subsystem as a whole, or a specific instance
of a data server. A data server is a (hardware/software) entity that
accepts, stores, and distributes EOS (and other) data, for both other
subsystems within ECS and external users.

data server insert request Request to insert data into a data server.

data set A logically meaningful grouping or collection of similar or related da-
ta.

data type A particular type of data handled by a particular data server. An ex-
ample of a data type might be MODIS Level 1a products, etc.

GL-4 305-CD-009-001

data type taxonomy A classification of earth science and related data into types.

definitive attitude data Down-linked attitude data received with Level 0 data.

definitive orbit data Down-linked orbit (ephemeris) data received with level 0 data.

delivered algorithm pack-
ages

The full content of data and information delivered by a data producer
during the process of standard product Algorithm Integration & Test,
including all elements defined as minimum content within Volume 4
of the Science User's Guide, available at PDR.

Distributed Active Archive
Center (DAAC)

An EOSDIS facility which generates, archives, and distributes EOS
Standard Products and related information for the duration of the
EOS mission. An EOSDIS DAAC is managed by an institution such
as a NASA field center or a university, per agreement with NASA.
Each DAAC contains functional elements for processing data (the
PGS), for archiving and disseminating data (the DADS), and for user
services and information management (elements of the IMS).

ASF -- Alaska SAR Facility
EDC -- EROS Data Center
GSFC -- Goddard Space Flight Center
JPL -- Jet Propulsion Laboratory
LaRC -- Langley Research Center
MSFC -- Marshall Space Flight Center
NSIDC -- National Snow and Ice Data Center

EDOS data unit (EDU) The message packet generated by EDOS that contains the recon-
structed spacecraft telemetry packet.

engineering data All data available on-board about health, safety, environment, or
status of the spacecraft and instruments.
• housekeeping data: The subset of engineering data required for
mission and science operations. These include health and safety,
ephemeris, and other required environmental parameters.
• instrument engineering data: All non-science data provided by the
instrument.
• platform engineering data: The subset of engineering data from
platform sensor measurements and on-board computations.
• spacecraft engineering data: The subset of engineering data from
spacecraft sensor measurements and on-board computations.

EOS Data and Operations
System (EDOS) produc-
tion data set

Data sets generated by EDOS using raw instrument or spacecraft
packets with space-to-ground transmission artifacts removed, in
time order, with duplicate data removed, and with quality/ account-
ing (Q/A) metadata appended. Time span, or number of packets,
encompassed in a single data set are specified by the recipient of
the data. These data sets are equivalent to Level 0 data formatted
with Q/A metadata.
For EOS, the data sets are composed of: instrument science pack-
ets, instrument engineering packets, spacecraft housekeeping
packets, or onboard ancillary packets with quality and accounting in-
formation from each individual packet and the data set itself and with
essential formatting information for unambiguous identification and
subsequent processing.

ephemeris data See "orbit data"

external data provider An external data source providing data to be ingested in SDPS.

format Format of data -- ASCII, binary, etc.

GL-5 305-CD-009-001

granule The smallest aggregation of data that is independently managed
(i.e., described, inventoried, retrievable). Granules may be man-
aged as logical granules and/or physical granules.

granule location The name of the product where this granule is located.

hardware That combination of subcontracted, COTS, and government fur-
nished equipment (e.g., cables and computing machines) that are
the platforms for software.

hardware configuration
item (HWCI)

A configuration item comprised of hardware components.

HDF file A data file whose format follows the NCSA Hierarchical Data Format
standard, as well as ECS-developed extensions thereto.

I/O access A read or write by a process to a data file.

ingest status request Request for status on a data ingest request.

insert request Request to insert data into the archive.

interface classes The interfaces offered by a class of objects or object collections. Us-
er, for example, in the context of Service Classes to denote the col-
lection of interfaces supported by this service class.

interface definition lan-
guage (IDL)

IDL provides uniform semantics for all interfaces.

interface(s) The functional and physical characteristics required to exist at a
common boundary.

maintainability The measure of the ability of an item to be retained in or restored to
a specified condition when maintenance is performed by personnel
having specified skill levels, using prescribed procedures and re-
sources, at each prescribed level of maintenance and repair. (The
probability that maintenance, both corrective and preventive, can be
performed in a specified amount of time using a specified set of pre-
scribed procedures and resources expressed as MTTR). Maintain-
ability is the function of design.

mean down time (MDT) Sum of the mean time to repair MTTR, plus the average administra-
tive logistic delay times.

mean time between failure
(MTBF)

The reliability result of the reciprocal of a failure rate that predicts the
average number of hours that an item, assembly or piece part will
operate within specific design parameters. (MTBF=1/(l) failure rate;
(l) failure rate = # of failures/operating time.

mean time to repair (MT-
TR)

The mean time required to perform corrective maintenance to re-
store a system/equipment to operate within design parameters. It is
a basic measure of maintainability: The sum of corrective mainte-
nance times at any specific level of repair, divided by the total num-
ber of failures within an item repaired at that level, during a particular
interval under stated conditions.

metadata Information about data sets which is provided to the ECS by the data
supplier or the generating algorithm and which provides a descrip-
tion of the content, format, and utility of the data set. Metadata may
be used to select data for a particular scientific investigation. It is
“data about data” used to facilitate database searches. Types of
metadata include: product metadata (data describing a particular
product, such as when it was generated, etc.) and algorithm meta-
data (data describing science software)

GL-6 305-CD-009-001

object Identifiable encapsulated entities providing one or more services
that clients can request. Objects are created and destroyed as a re-
sult of object requests. Objects are identified by client via unique
reference.

object implementation Code and data that realizes target object's behavior.

operations personnel Same as operations staff.

operations staff Generic term for personnel who have the responsibility to operate,
monitor, and control SDPS. Also can be, one of the DAAC opera-
tions staff assigned to the ingest or data server subsystems, i.e.,
Data Archive Analyst, Data Ingest Technician, Data Distribution
Technician, Data Base Administrator, etc.

orbit data Data that represent spacecraft locations. Orbit (or ephemeris) data
include: Geodetic latitude, longitude and height above an adopted
reference ellipsoid (or distance from the center of mass of the
Earth); a corresponding statement about the accuracy of the posi-
tion and the corresponding time of the position (including the time
system); some accuracy requirements may be hundreds of meters
while other may be a few centimeters.

p = v metadata Label = value where label is a field name and value is either a single
value or list of values

Preliminary Design Re-
view (PDR)

PDR is held for each ECS Segment. The PDR addresses the de-
sign of the segment-level capabilities and element interfaces
through all ECS releases. The PDR also addresses prototyping re-
sults and how the results of both Contractor and Government proto-
typing efforts, studies, and user experience with EOSDIS Version 0
have been incorporated into the ECS design for each respective
Segment.

process An executing program.

quick-look data Data received during one TDRSS contact period which have been
processed to Level 0 (to the extent possible for data from a single
contact).

reliability Reliability is the function of design. It is the probability that system/
equipment will operate within design parameters under stated con-
ditions, for a specified interval expressed as MTBF.

report Documentation of some automated (such as standards checking)
or manual (such as evaluation of a science software delivery) activ-
ity.

requirement A statement to which the developed system must comply. Varieties
of requirements: Levels 2, 3, 4; performance, functional, design, in-
terface.

requirements traceability There are three recognized levels of requirements on the ECS
Project:

• ESDIS (Level 2)
• ECS System (Level 3)
• ECS Detailed Subsystem (Level 4)

Traceability is the verification and validation of the parents and chil-
dren of ECS Levels 2,3,4 requirements down to release and sub-
system levels. Analysis is done by the ECS Project System and
Subsystem engineering.

GL-7 305-CD-009-001

reusable software Software developed in response to the requirements for one appli-
cation that can be used, in whole or in part, to satisfy the require-
ments of another application.

scenario A description of the operation of the system in user’s terminology in-
cluding a description of the output response for a given set of input
stimuli. Scenarios are used to define operations concepts.

science user A user the SDPS from the scientist community or other user com-
munity that originates service requests.

SDP Toolkit A set of SDPS-standard API between science algorithms and the
process execution service for status reporting and process control

server A software component that receives and executes service requests
(e.g., the LIM, the DIM, the data server, the PLANG CI).

service A grouping of functional requirements as listed in a specification.
For example, in the Level 3 requirements, IMS “services” are Sys-
tem Access, Information Search, etc.

session The logical context assigned to a user or a client in which a set of
service requests are performed. Sessions associate and manage
the resources and results sets that are allocated and generated as
a result of the processing of service requests. A session retains in-
formation associated with the execution of service requests so that
it is accessible to subsequent service requests. Service requests
may utilize resources and results sets allocated and produced by
other service requests belonging to the same session. Service re-
quests issued in the context of one session cannot utilize the re-
sources managed by another session. There are two kinds of
sessions, client sessions and user sessions.
Sessions have the following states:
a. Active: The session is established and will allow service re-
quests to allocate and access session resources.
b. Suspended: The session is established, but will not accept
service requests. Session resources are saved but not accessible.
c. Terminated: The processing of service requests in the ses-
sion’s context is no longer possible. Session resources have been
returned to the system.

session, client A client session supports interactions between a client and a server.
Client sessions associate and manage the resources and results
sets that are allocated and generated by the server.

simulated data ...same as test data

status Status is information regarding schedules, hardware and software
configuration, exception conditions, or processing performance.
This information is exchanged with the DADS, and is provided to the
system management center (SSMC). The SSMC may also receive
information regarding schedule conflicts that have not been re-
solved with the IMS.

status request Request for status of archive insert and retrieval requests (also need
this for ingest and distribution).

universal reference A uniform model for referencing objects throughout SDPS which
each SDPS service will understand and support.

GL-8 305-CD-009-001

user • Any person accessing the EOSDIS.
• Authorized users are users who have viable EOSDIS accounts,
and who may therefore make EOSDIS data requests. These users
may be affiliated or unaffiliated. Affiliated users are those who are
sponsored by one of the parties to the Earth Observations-Interna-
tional Coordination Working Group (EAU-ICWG) data policy. Each
party is responsible for ensuring that all its affiliated users comply
with the EO-ICWG data policy. Use of data by affiliated users is
classified in one of three categories, defined in the EO-ICWG data
policy:
+ Research Use: A study or an investigation in which the user af-
firms (1) the aim is to establish facts or principles; (2) the data will
not be sold or reproduced or provided to anyone not covered by this
or another valid affirmation; (3) the results of the research will be
submitted for publication in the scientific literature; and (4) detailed
results of the research will be provided to the sponsoring spacecraft
operator as agreed between the researcher and the sponsoring
spacecraft operator. In the context of EOSDIS , this means that
NASA-affiliated users must make available to the research commu-
nity their detailed results, including data, algorithms, and models at
the time their research is accepted for publication, and that the data

World Wide Web browser Software (local or remote) that allows a user to Access the WWW
either textually or graphically. WWW is a mechanism for connecting
Internet via a set of hypertext documents.

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Document Organization
	1.4 Status and Schedule

	2. Related Documents
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents Not Referenced

	3. Ingest Subsystem Overview
	3.1 Introduction and Context
	3.1.1 Ingest Subsystem Context Diagram

	3.2 Ingest Subsystem Overview
	3.2.1 Ingest Subsystem Configuration Item (CI) Lis...
	3.2.2 Ingest Subsystem Design Rationale
	Figure 3.1-1. Ingest Subsystem Context Diagram
	Figure 3.1-2. Ingest Subsystem Hardware Diagram

	4. INGST - Ingest CSCI
	4.1 CSCI Overview
	4.2 CSCI Context
	4.3 Ingest CSCI Object Model
	4.3.1 CsGateWay Class
	Figure 4.3-1. In_Ingest_Main_Object_Model Diagram

	4.3.2 DsCIDescriptor Class
	Figure 4.3.2. In_Ingest_Reprocessing Object Model Diagram

	4.3.3. InBOBinMetadata Class
	Figure 4.3-3. In_Ingest_Request_Processing_Object Model Digram

	4.3.4 InBOMetadata Class
	Figure 4.3-4. In_Ingest_Session_Manager_Object Diagram

	4.3.5 InDAN Class
	Figure 4.3-5. In_Ingest_Session_Object_Model Diagram

	4.3.6 InDataPreprocessList Class
	4.3.7 InDataPreprocessTask Class
	4.3.8 InDataServerInsertionTask Class
	4.3.9 InDataServerInsertionTask Class
	4.3.10 InDataTransferTask Class
	4.3.11 InDataType Class
	4.3.12 InDataTypeTemplate Class
	4.3.13 InExternalDataProviderThreshold Class
	4.3.14 InFDFData Class
	4.3.15 InFile Class
	4.3.16 InFileTypeTemplate Class
	4.3.17 InGRIBData Class
	4.3.18 InGUISession Class
	4.3.19 InHDFMetadata Class
	4.3.20 InHistoryLog Class
	4.3.21 InLogMonitor Class
	4.3.22 InLongDAA Class
	4.3.23 InLongDDN Class
	4.3.24 InMediaIngest Class
	4.3.25 InMessage Class
	4.3.26 InMetadata Class
	4.3.27 InMetadataTool Class
	4.3.28 InNetworkIngest Class
	4.3.29 InPVMetadata Class
	4.3.30 InPollingIngestSession Class
	4.3.31 InPollingThreshold Class
	4.3.32 InReformatData Class
	4.3.33 InRequest Class
	4.3.34 InRequestController Class
	4.3.35 InRequestFileInfo Class
	4.3.36 InRequestInfo Class
	4.3.37 InRequestList Class
	4.3.38 InRequestManager Class
	4.3.39 InRequestManager_C Class
	4.3.40 InRequestManager_S Class
	4.3.41 InRequestProcessData Class
	4.3.42 InRequestProcessHeader Class
	4.3.43 InRequestSummaryData Class
	4.3.44 InRequestSummaryHeader Class
	4.3.45 InRequest_C Class
	4.3.46 InRequest_S Class
	4.3.47 InResourceIF Class
	4.3.48 InSDMetadata Class
	4.3.49 InScienceData Class
	4.3.50 InServer Class
	4.3.51 InServerExtRPC_C Class
	4.3.52 InServerExtRPC_S Class
	4.3.53 InServerIntRPC_C Class
	4.3.54 InServerIntRPC_S Class
	4.3.55 InSession Class
	4.3.56 InSessionEcsRPC_C Class
	4.3.57 InSessionEcsRPC_S Class
	4.3.58 InSessionExtRPC_C Class
	4.3.59 InSessionExtRPC_S Class
	4.3.60 InSessionInfo Class
	4.3.61 InSessionIntRPC_C Class
	4.3.62 InSessionIntRPC_S Class
	4.3.63 InShortDAA Class
	4.3.64 InShortDDN Class
	4.3.65 InSourceMCF Class
	4.3.66 InStatusMonitor Class
	4.3.67 InSystemThreshold Class
	4.3.68 InTemplateEditor Class
	4.3.69 InThreshold Class
	4.3.70 InThresholdController Class
	4.3.71 InTransferredData Class

	4.4 Ingest CSCI Dynamic Model
	4.4.1 Automated Network Ingest (Get) Scenario
	Figure 4.4-1. In_Automated_Network_Ingest...

	4.4.2 Polling Ingest (Files) Scenario
	Figure 4.4-2. In_Polling_Files_Ingest_Event...

	4.4.3 Polling Ingest (Delivery Record) Scenario
	Figure 4.4-3. In Polling Delivery Record...

	4.4.4 User Network Ingest Scenario
	Figure 4.4-4. In_User_Network_Ingest_Event_Trace D...

	4.4.5 Hard Media Ingest Scenario
	Figure 4.4-5. In_Hard_Media...

	4.4.6 Ingest History Log Viewing Scenario
	Figure 4.4-6. In_Ingest_History_Log...

	4.4.7 Operator Ingest Status Monitoring Scenario
	Figure 4.4-7. In_Ingest_Operator Status Monitoring...

	4.4.8 User Ingest Status Monitoring Scenario
	Figure 4.4-8. User Status Montitoring

	4.4.9 Operator Request Update Scenario
	Figure 4.4-9. Operator Request Update

	4.4.10 Preprocessing Scenario
	Figure 4.4-10. Preprocessing

	4.4.11 Ingest Fault/Error Scenario
	Figure 4.4-11. In_Ingest_Network_Ingest_Get_State_...
	Figure 4.4-12. In_Ingest_Media_Ingest_State Diagra...

	4.5 CSCI Structure
	Figure 4.5-1. Ingest CSC Interaction
	4.5.1 Ingest Session Manager CSC
	Figure 4.5-2. Ingest Session Manager CSC

	4.5.2 Polling Ingest Client Interface CSC
	4.5.3 Ingest Request Processing CSC
	Figure 4.5-3. Ingest Polling CSC

	4.5.4 Ingest Data Transfer CSC
	Figure 4.5-4. Ingest Request Processing CSC

	4.5.5 Ingest Data Preprocessing CSC
	Figure 4.5-5. Ingest Preprocessing CSC Data Flow

	4.5.6 Operator Ingest Interface CSC
	Figure 4.5-6. Media Ingest CSC
	Figure 4.5-7. Administrative Viewing CSC
	Figure 4.5-8. Request Cancellation CSC

	4.5.7 User Network Ingest Interface CSC
	Figure 4.5-9. User Network Ingest CSC

	4.5.8 Ingest DBMS CSC
	4.5.9 Ingest Administration Data CSC
	4.5.10 Peripherals CSC
	4.5.11 Viewing Tools CSC
	4.5.12 Data Storage Software CSC
	4.5.13 Resource Administration CSC
	4.5.14 Client Interfaces CSC

	4.6 Ingest CSCI Management and Operation
	4.6.1 System Management Strategy
	4.6.2 Operator Interfaces
	4.6.3 Ingest Production Reports

	5. ICLHW - Ingest Client HWCI
	5.1 Introduction
	5.1.1 HWCI Design Drivers
	5.1.2 HWCI Structure
	Figure 5.1-1. Ingest HWCI Block Diagram
	Figure 5.1-2. Ingest Network Connectivity

	5.1.3 Failover and Recovery Strategy

	Appendix A. Requirements Trace
	Appendix B. Program Design Language (PDL)
	Acronyms and Abbreviations
	Glossary

